IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/67456.html
   My bibliography  Save this paper

A network analysis of the volatility of high-dimensionalfinancial series

Author

Listed:
  • Barigozzi, Matteo
  • Hallin, Marc

Abstract

Interconnectedness between stocks and firms plays a crucial role in the volatility contagion phenomena that characterise financial crises, and graphs are a natural tool in their analysis. In this paper, we are proposing graphical methods for an analysis of volatility interconnections in the Standard & Poor’s 100 dataset during the period 2000-2013, which contains the 2007-2008 Great Financial Crisis. The challenges are twofold: first, volatilities are not directly observed and have to be extracted from time series of stock returns; second, the observed series, with about 100 stocks, is high-dimensional, and curse of dimensionality problems are to be faced. To overcome this double challenge, we propose a dynamic factor model methodology, decomposing the panel into a factor-driven and an idiosyncratic component modelled as a sparse vector autoregressive model. The inversion of this autoregression, along with suitable identification constraints, produces networks in which, for a given horizon h, the weight associated with edge (i; j) represents the h-step-ahead forecast error variance of variable i accounted for by variable j’s innovations. Then, we show how those graphs yield an assessment of how systemic each firm is. They also demonstrate the prominent role of financial firms as sources of contagion during the 2007-2008 crisis.

Suggested Citation

  • Barigozzi, Matteo & Hallin, Marc, 2017. "A network analysis of the volatility of high-dimensionalfinancial series," LSE Research Online Documents on Economics 67456, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:67456
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/67456/
    File Function: Open access version.
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    7. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    8. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    9. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    10. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    11. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    12. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    13. Matteo Barigozzi & Giorgio Fagiolo & Diego Garlaschelli, 2009. "Multinetwork of international trade: A commodity-specific analysis," Papers 0908.1879, arXiv.org, revised Jun 2010.
    14. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    15. Fagiolo, Giorgio & Santoni, Gianluca, 2015. "Human-mobility networks, country income, and labor productivity," Network Science, Cambridge University Press, vol. 3(03), pages 377-407, September.
    16. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
    17. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    18. Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
    19. repec:eee:jouret:v:92:y:2016:i:1:p:25-39 is not listed on IDEAS
    20. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    21. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    22. Hsu, Nan-Jung & Hung, Hung-Lin & Chang, Ya-Mei, 2008. "Subset selection for vector autoregressive processes using Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3645-3657, March.
    23. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    24. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    25. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    26. Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2014. "Forecasting systemic impact in financial networks," International Journal of Forecasting, Elsevier, vol. 30(3), pages 781-794.
    27. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    28. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    29. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    30. Boyan Jovanovic, 1987. "Micro Shocks and Aggregate Risk," The Quarterly Journal of Economics, Oxford University Press, vol. 102(2), pages 395-409.
    31. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    32. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    33. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    34. Eichler, Michael, 2007. "Granger causality and path diagrams for multivariate time series," Journal of Econometrics, Elsevier, vol. 137(2), pages 334-353, April.
    35. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    36. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    37. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    38. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    39. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    40. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    41. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    42. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    2. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2019. "Time-Varying General Dynamic Factor Models and the Measurement of Financial Connectedness," Working Papers ECARES 2019-09, ULB -- Universite Libre de Bruxelles.
    3. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    4. repec:cup:jfinqa:v:53:y:2018:i:03:p:1371-1390_00 is not listed on IDEAS
    5. Christian Gross & Pierre L. Siklos, 2018. "Analyzing Credit Risk Transmission to the Non-Financial Sector in Europe: A Network Approach," CQE Working Papers 7218, Center for Quantitative Economics (CQE), University of Muenster.
    6. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. " Volatility spillovers and heavy tails: a large t-Vector AutoRegressive approach," Working Papers Department of Decision Sciences and Information Management 590528, KU Leuven, Faculty of Economics and Business, Department of Decision Sciences and Information Management.
    7. Geraci, Marco Valerio & Gnabo, Jean-Yves, 2018. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying Vector Autoregressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(03), pages 1371-1390, June.

    More about this item

    Keywords

    dynamic factor models; sparse autoregression models; volatility; systemic risk; Standard & Poor’s 100 index;

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:67456. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (LSERO Manager). General contact details of provider: http://edirc.repec.org/data/lsepsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.