IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

An overview of the estimation of large covariance and precision matrices

Listed author(s):
  • Jianqing Fan
  • Yuan Liao
  • Han Liu

The estimation of large covariance and precision matrices is fundamental in modern multivariate analysis. However, problems arise from the statistical analysis of large panel economic and financial data. The covariance matrix reveals marginal correlations between variables, while the precision matrix encodes conditional correlations between pairs of variables given the remaining variables. In this paper, we provide a selective review of several recent developments on the estimation of large covariance and precision matrices. We focus on two general approaches: a rank‐based method and a factor‐model‐based method. Theories and applications of both approaches are presented. These methods are expected to be widely applicable to the analysis of economic and financial data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1111/ectj.12061
Download Restriction: no

Article provided by Royal Economic Society in its journal Econometrics Journal.

Volume (Year): 19 (2016)
Issue (Month): 1 (February)
Pages: 1-32

as
in new window

Handle: RePEc:wly:emjrnl:v:19:y:2016:i:1:p:c1-c32
Contact details of provider: Postal:
2 Dean Trench Street, Westminster, SW1P 3HE

Phone: +44 20 3137 6301
Web page: http://www.res.org.uk/
Email:


More information through EDIRC

Order Information: Web: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1368-423X

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Choi, In, 2012. "Efficient Estimation Of Factor Models," Econometric Theory, Cambridge University Press, vol. 28(02), pages 274-308, April.
  2. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
  3. Fama, Eugene F & French, Kenneth R, 1992. " The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
  4. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
  5. Breitung, Jörg & Tenhofen, Jörn, 2011. "GLS Estimation of Dynamic Factor Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1150-1166.
  6. Mahmoud Hamada & Emiliano A. Valdez, 2008. "CAPM and Option Pricing With Elliptically Contoured Distributions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 387-409.
  7. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
  8. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
  9. Connor, Gregory & Linton, Oliver, 2007. "Semiparametric estimation of a characteristic-based factor model of common stock returns," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 694-717, December.
  10. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  11. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
  12. Gregory Connor & Matthias Hagmann & Oliver Linton, 2012. "Efficient Semiparametric Estimation of the Fama–French Model and Extensions," Econometrica, Econometric Society, vol. 80(2), pages 713-754, March.
  13. Song Song & Wolfgang K. Härdle & Ya'acov Ritov, 2014. "Generalized dynamic semi‐parametric factor models for high‐dimensional non‐stationary time series," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 101-131, June.
  14. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
  15. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
  16. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
  17. Gregory Connor & Matthias Hagmann & Oliver Linton, 2007. "Efficient Estimation of a Semiparametric Characteristic- Based Factor Model of Security Returns," Swiss Finance Institute Research Paper Series 07-26, Swiss Finance Institute.
  18. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  19. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
  20. Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
  21. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  22. Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
  23. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
  24. Tsai, Henghsiu & Tsay, Ruey S., 2010. "Constrained Factor Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1593-1605.
  25. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
  26. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
  27. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
  28. Owen, Joel & Rabinovitch, Ramon, 1983. " On the Class of Elliptical Distributions and Their Applications to the Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 38(3), pages 745-752, June.
  29. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
  30. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
  31. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  32. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
  33. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
  34. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
  35. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  36. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
  37. Xiaotong Shen & Wei Pan & Yunzhang Zhu, 2012. "Likelihood-Based Selection and Sharp Parameter Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 223-232, March.
  38. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
  39. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
  40. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
  41. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  42. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:19:y:2016:i:1:p:c1-c32. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.