IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2011-13.html
   My bibliography  Save this paper

High-Dimensional Instrumental Variables Regression and Confidence Sets

Author

Listed:
  • Eric Gautier

    () (CREST)

  • Alexandre Tsybakov

    () (CREST)

Abstract

We propose an instrumental variables method for inference in high-dimensional structural equations with endogenous regressors. The number of regressors K can be much larger than the sample size. A key ingredient is sparsity, i.e., the vector of coefficients has many zeros, or approximate sparsity, i.e., it is well approximated by a vector with many zeros. We can have less instruments than regressors and allow for partial identification. Our procedure, called STIV (Self Tuning Instrumental Variables) estimator, is realized as a solution of a conic program. The joint confidence sets can be obtained by solving K convex programs. We provide rates of convergence, model selection results and propose three types of joint confidence sets relying each on different assumptions on the parameter space. Under the stronger assumption they are adaptive. The results are uniform over a wide classes of distributions of the data and can have finite sample validity. When the number of instruments is too large or when one only has instruments for an endogenous regressor which are too weak, the confidence sets can have infinite volume with positive probability. This provides a simple one-stage procedure for inference robust to weak instruments which could also be used for low dimensional models. In our IV regression setting, the standard tools from the literature on sparsity, such as the restricted eigenvalue assumption are inapplicable. Therefore we develop new sharper sensitivity characteristics, as well as easy to compute data-driven bounds. All results apply to the particular case of the usual high-dimensional regression. We also present extensions to the high-dimensional framework of the two-stage least squares method and method to detect endogenous instruments given a set of exogenous instruments.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2011-13
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2011-13.pdf
    File Function: Crest working paper version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alastair R. Hall & Fernanda P. M. Peixe, 2003. "A Consistent Method for the Selection of Relevant Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 269-287, January.
    2. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    3. Okui, Ryo, 2011. "Instrumental variable estimation in the presence of many moment conditions," Journal of Econometrics, Elsevier, vol. 165(1), pages 70-86.
    4. Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(01), pages 270-290, February.
    5. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    6. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(06), pages 797-834, December.
    7. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    8. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2011-13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sri Srikandan). General contact details of provider: http://edirc.repec.org/data/crestfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.