IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/201111.html
   My bibliography  Save this paper

Instrumental Variable Estimation with Heteroskedasticity and Many Instruments

Author

Listed:
  • Norman R. Swanson

    () (Rutgers University)

  • John C. Chao

    () (University of Maryland)

  • Jerry A. Hausman

    () (MIT)

  • Whitney K. Newey

    () (MIT)

  • Tiemen Woutersen

    () (Johns Hopkins University)

Abstract

This paper gives a relatively simple, well behaved solution to the problem of many instruments in heteroskedastic data. Such settings are common in microeconometric applications where many instruments are used to improve efficiency and allowance for heteroskedasticity is generally important. The solution is a Fuller (1977) like estimator and standard errors that are robust to heteroskedasticity and many instruments. We show that the estimator has finite moments and high asymptotic efficiency in a range of cases. The standard errors are easy to compute, being like White’s (1982), with additional terms that account for many instruments. They are consistent under standard, many instrument, and many weak instrument asymptotics. Based on a series of Monte Carlo experiments, we find that the estimators perform as well as LIML or Fuller (1977) under homoskedasticity, and have much lower bias and dispersion under heteroskedasticity, in nearly all cases considered.

Suggested Citation

  • Norman R. Swanson & John C. Chao & Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen, 2011. "Instrumental Variable Estimation with Heteroskedasticity and Many Instruments," Departmental Working Papers 201111, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:201111
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2011-11.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    2. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
    3. Phillips, Garry D A & Hale, C, 1977. "The Bias of Instrumental Variable Estimators of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(1), pages 219-228, February.
    4. Andrews, Donald W.K. & Stock, James H., 2007. "Testing with many weak instruments," Journal of Econometrics, Elsevier, vol. 138(1), pages 24-46, May.
    5. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    6. Jinyong Hahn & Atsushi Inoue, 2002. "A Monte Carlo Comparison Of Various Asymptotic Approximations To The Distribution Of Instrumental Variables Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 21(3), pages 309-336.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Instrumental Variables ; Jackknife; Many Instruments; Heteroskedasticity;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201111. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/derutus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.