IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/201310.html
   My bibliography  Save this paper

Combining Two Consistent Estimators

Author

Listed:
  • John Chao

    () (University of Maryland)

  • Jerry Hausman

    () (MIT)

  • Whitney Newey

    () (MIT)

  • Norman Swanson

    () (Rutgers University)

  • Tiemen Woutersen

    () (University of Arizona)

Abstract

This paper shows how a weighted average of a forward and reverse Jackknife IV estimator (JIVE) yields estimators that are robust against heteroscedasticity and many instruments. These estimators, called HFUL (Heteroscedasticity robust Fuller) and HLIM (Heteroskedasticity robust limited information maximum likelihood (LIML)) were introduced by Hausman et al. (2012), but without derivation. Combining consistent estimators is a theme that is associated with Jerry Hausman and, therefore, we present this derivation in this volume. Additionally, and in order to further understand and interpret HFUL and HLIM in the context of jackknife type variance ratio estimators, we show that a new variant of HLIM, under specific grouped data settings with dummy instruments, simplifies to the Bekker and van der Ploeg (2005) MM (method of moments) estimator.

Suggested Citation

  • John Chao & Jerry Hausman & Whitney Newey & Norman Swanson & Tiemen Woutersen, 2013. "Combining Two Consistent Estimators," Departmental Working Papers 201310, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:201310
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2013-10.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(01), pages 42-86, February.
    2. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    3. Paul A. Bekker & Jan Ploeg, 2005. "Instrumental variable estimation based on grouped data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(3), pages 239-267.
    4. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    5. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
    6. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    7. Phillips, Garry D A & Hale, C, 1977. "The Bias of Instrumental Variable Estimators of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(1), pages 219-228, February.
    8. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    9. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    endogeneity; instrumental variables; jackknife estimation; many moments; Hausman (1978) test;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201310. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/derutus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.