IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp1095.html
   My bibliography  Save this paper

Regional Treatment Intensity as an Instrument for the Evaluation of Labour Market Policies

Author

Listed:
  • Frölich, Markus

    (University of Mannheim)

  • Lechner, Michael

    (University of St. Gallen)

Abstract

The effects of active labour market policies (ALMP) on individual employment chances and earnings are evaluated by nonparametric instrumental variables based on Swiss administrative data with detailed regional information. Using an exogenous variation in the participation probabilities across fairly autonomous regional units (cantons) generated by the federal government, we identify the effects of ALMP by comparing individuals living in the same local labour market but in different cantons. Taking account of small sample problems occurring in IV estimation, our results suggest that ALMP increases individual employment probabilities by about 15% in the short term for a weighted subpopulation of compliers.

Suggested Citation

  • Frölich, Markus & Lechner, Michael, 2004. "Regional Treatment Intensity as an Instrument for the Evaluation of Labour Market Policies," IZA Discussion Papers 1095, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp1095
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp1095.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gerfin, Michael & Lechner, Michael & Steiger, Heidi, 2005. "Does subsidised temporary employment get the unemployed back to work? Aneconometric analysis of two different schemes," Labour Economics, Elsevier, vol. 12(6), pages 807-835, December.
    2. Sandra E. Black, 1999. "Do Better Schools Matter? Parental Valuation of Elementary Education," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 577-599.
    3. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    4. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    5. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935, Elsevier.
    6. Michael Gerfin & Michael Lechner, 2002. "A Microeconometric Evaluation of the Active Labour Market Policy in Switzerland," Economic Journal, Royal Economic Society, vol. 112(482), pages 854-893, October.
    7. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    8. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    9. Lechner, Michael & Smith, Jeffrey, 2007. "What is the value added by caseworkers?," Labour Economics, Elsevier, vol. 14(2), pages 135-151, April.
    10. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    11. Karen M. Pence, 2006. "Foreclosing on Opportunity: State Laws and Mortgage Credit," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 177-182, February.
    12. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-841, May.
    13. Buse, A, 1992. "The Bias of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 60(1), pages 173-180, January.
    14. Arulampalam, W. & Robin A. Naylor & Jeremy P. Smith, 2002. "University of Warwick," Royal Economic Society Annual Conference 2002 9, Royal Economic Society.
    15. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    16. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    17. David G. Blanchflower & Richard B. Freeman, 2000. "Youth Employment and Joblessness in Advanced Countries," NBER Books, National Bureau of Economic Research, Inc, number blan00-1.
    18. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    19. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    20. Joshua D. Angrist & Guido W. Imbens & D.B. Rubin, 1993. "Identification of Causal Effects Using Instrumental Variables," NBER Technical Working Papers 0136, National Bureau of Economic Research, Inc.
    21. Dan A. Black & Jeffrey A. Smith & Mark C. Berger & Brett J. Noel, 2003. "Is the Threat of Reemployment Services More Effective Than the Services Themselves? Evidence from Random Assignment in the UI System," American Economic Review, American Economic Association, vol. 93(4), pages 1313-1327, September.
    22. James J. Heckman & Jeffrey Smith, 2000. "The Sensitivity of Experimental Impact Estimates (Evidence from the National JTPA Study)," NBER Chapters, in: Youth Employment and Joblessness in Advanced Countries, pages 331-356, National Bureau of Economic Research, Inc.
    23. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    24. Hahn, Jinyong, 2002. "Optimal Inference With Many Instruments," Econometric Theory, Cambridge University Press, vol. 18(1), pages 140-168, February.
    25. Rafael Lalive & Jan C. van Ours & Josef Zweimueller, "undated". "The Impact of Active Labor Market Programs on the Duration of Unemployment," IEW - Working Papers 041, Institute for Empirical Research in Economics - University of Zurich.
    26. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    27. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    28. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    29. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    30. Thomas J. Holmes, 1998. "The Effect of State Policies on the Location of Manufacturing: Evidence from State Borders," Journal of Political Economy, University of Chicago Press, vol. 106(4), pages 667-705, August.
    31. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    32. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    33. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-183, January.
    34. Phillips, Garry D A & Hale, C, 1977. "The Bias of Instrumental Variable Estimators of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(1), pages 219-228, February.
    35. Anderson, T W & Sawa, Takamitsu, 1979. "Evaluation of the Distribution Function of the Two-Stage Least Squares Estimate," Econometrica, Econometric Society, vol. 47(1), pages 163-182, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatrix Brügger & Rafael Lalive & Josef Zweimüller, 2009. "Does Culture Affect Unemployment? Evidence from the Röstigraben," CESifo Working Paper Series 2714, CESifo.
    2. Ammermüller, Andreas & Zwick, Thomas & Boockmann, Bernhard & Maier, Michael, 2007. "Do hiring subsidies reduce unemployment among the elderly? Evidence from two natural experiments," ZEW Discussion Papers 07-001, ZEW - Leibniz Centre for European Economic Research.
    3. Paul Frijters & Robert Gregory, 2006. "From Golden Age to Golden Age: Australia's ‘Great Leap Forward’?," The Economic Record, The Economic Society of Australia, vol. 82(257), pages 207-224, June.
    4. Lagerström, Jonas, 2011. "How important are caseworkers – and why? New evidence from Swedish employment offices," Working Paper Series 2011:10, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    5. Zweimüller, Josef & Lalive, Rafael & Brügger, Beatrix, 2009. "Does Culture Affect Unemployment? Evidence from the Röstigraben," CEPR Discussion Papers 7405, C.E.P.R. Discussion Papers.
    6. Brian Krogh Graversen & Peter Jensen, 2010. "A Reappraisal of the Virtues of Private Sector Employment Programmes," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 546-569, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    2. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    3. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    4. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    5. Norman R. Swanson & John C. Chao, 2004. "Estimation and Testing Using Jackknife IV in Heteroskedastic Regressions with Many Weak Instruments," Econometric Society 2004 Far Eastern Meetings 668, Econometric Society.
    6. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    7. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    8. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    9. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    10. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    11. John C. Chao & Norman R. Swanson, 2003. "Asymptotic Normality of Single-Equation Estimators for the Case with a Large Number of Weak Instruments," Departmental Working Papers 200312, Rutgers University, Department of Economics.
    12. Russell Davidson & James G. MacKinnon, 2006. "The case against JIVE," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 827-833, September.
    13. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    14. D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
    15. Nam-Hyun Kim & Winfried Pohlmeier, 2015. "A Regularization Approach to Biased Two-Stage Least Squares Estimation," Working Paper series 15-22, Rimini Centre for Economic Analysis.
    16. Hausman, Jerry & Stock, James H. & Yogo, Motohiro, 2005. "Asymptotic properties of the Hahn-Hausman test for weak-instruments," Economics Letters, Elsevier, vol. 89(3), pages 333-342, December.
    17. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    18. Namhyun Kim & Winfried Pohlmeier, 2016. "A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(6), pages 915-924, December.
    19. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    20. Arcand, Jean-Louis & Ai, Chunrong & Ethier, Francois, 2007. "Moral hazard and Marshallian inefficiency: Evidence from Tunisia," Journal of Development Economics, Elsevier, vol. 83(2), pages 411-445, July.

    More about this item

    Keywords

    local average treatment effect; active labour market policy; state borders; geographic variation; weak instruments; small sample problems of IV; Switzerland; Fuller estimator;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • J68 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Public Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp1095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.