IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asymptotic Normality of Single-Equation Estimators for the Case with a Large Number of Weak Instruments

  • John C. Chao

    ()

    (University of Maryland)

  • Norman R. Swanson

    ()

    (Rutgers University)

This paper analyzes conditions under which various single-equation estimators are asymptotically normal in a simultaneous equations framework with many weak instruments. In particular, our paper adds to the many instruments asymptotic normality literature, including papers by Morimune (1983), Bekker (1994), Angrist and Krueger (1995), Donald and Newey (2001), Hahn, Hausman, and Kuersteiner (2001), and Stock and Yogo (2003). We consider the case where instrument weakness is such that rn, the rate of growth of the concentration parameter, is slower than Kn, the growth rate of the number of instruments, but such that Kn^.5/rn --> 0 as n --> 1: In this case, the rate of convergence is shown to be rn/Kn^.5 . We also show that formulae for the asymptotic variances of various single-equation estimators are di®erent from those obtained under assumptions of stronger instruments, i.e., cases where rn is assumed to grow at the same rate or at a faster rate than Kn. An interesting finding of this paper is that, for the case we study here, both the LIML and the Fuller estimators can be shown to be asymptotically more e±cient than the B2SLS estimator not just for the case where the error distributions are assumed to be Gaussian but for all error distributions that lie within the elliptical family.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://snde.rutgers.edu/Rutgers/wp/2003-12.pdf
Download Restriction: no

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 200312.

as
in new window

Length:
Date of creation: 20 Oct 2003
Date of revision:
Handle: RePEc:rut:rutres:200312
Contact details of provider: Postal: New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248
Phone: (732) 932-7363
Fax: (732) 932-7416
Web page: http://snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Koenker, Roger & Machado, Jose A. F., 1999. "GMM inference when the number of moment conditions is large," Journal of Econometrics, Elsevier, vol. 93(2), pages 327-344, December.
  2. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-81, May.
  3. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  4. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
  5. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-53, May.
  6. In Choi & Peter C.B. Phillips, 1989. "Asymptotic and Finite Sample Distribution Theory for IV Estimators and Tests in Partially Identified Structural Equations," Cowles Foundation Discussion Papers 929, Cowles Foundation for Research in Economics, Yale University.
  7. Donald, Stephen G. & Whitney Newey, 1999. "Choosing the Number of Instruments," Working papers 99-05, Massachusetts Institute of Technology (MIT), Department of Economics.
  8. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  9. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
  10. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-35, April.
  11. Joshua Angrist & Alan Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
  12. John C. Chao & Norman Rasmus Swanson, 2004. "Consistent Estimation with a Large Number of Weak Instruments," Yale School of Management Working Papers ysm374, Yale School of Management.
  13. Phillips, Garry D A & Hale, C, 1977. "The Bias of Instrumental Variable Estimators of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(1), pages 219-28, February.
  14. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
  15. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-41, May.
  16. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
  17. Peter C.B. Phillips, 1982. "Small Sample Distribution Theory in Econometric Models of Simultaneous Equations," Cowles Foundation Discussion Papers 617, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:200312. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.