IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v185y2015i2p332-342.html
   My bibliography  Save this article

Jackknife instrumental variable estimation with heteroskedasticity

Author

Listed:
  • Bekker, Paul A.
  • Crudu, Federico

Abstract

We present a new jackknife estimator for instrumental variable inference with unknown heteroskedasticity. It weighs observations such that many-instruments consistency is guaranteed while the signal component in the data is maintained. We show that this results in a smaller signal component in the many instruments asymptotic variance when compared to estimators that neglect a part of the signal to achieve consistency. Both many strong instruments and many weak instruments asymptotic distributions are derived using high-level assumptions that allow for instruments with identifying power that varies between explanatory variables. Standard errors are formulated compactly. We review briefly known estimators and show in particular that our symmetric jackknife estimator performs well when compared to the HLIM and HFUL estimators of Hausman et al. in Monte Carlo experiments.

Suggested Citation

  • Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
  • Handle: RePEc:eee:econom:v:185:y:2015:i:2:p:332-342
    DOI: 10.1016/j.jeconom.2014.08.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440761400267X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2014.08.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anderson, T.W., 2005. "Origins of the limited information maximum likelihood and two-stage least squares estimators," Journal of Econometrics, Elsevier, vol. 127(1), pages 1-16, July.
    2. Russell Davidson & James G. MacKinnon, 2006. "The case against JIVE," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 827-833, September.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Chirok Han & Peter C. B. Phillips, 2006. "GMM with Many Moment Conditions," Econometrica, Econometric Society, vol. 74(1), pages 147-192, January.
    5. Paul A. Bekker & Jan van der Ploeg, 2005. "Instrumental variable estimation based on grouped data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(3), pages 239-267, August.
    6. Gary Chamberlain & Guido Imbens, 2004. "Random Effects Estimators with many Instrumental Variables," Econometrica, Econometric Society, vol. 72(1), pages 295-306, January.
    7. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    8. Hahn, Jinyong, 2002. "Optimal Inference With Many Instruments," Econometric Theory, Cambridge University Press, vol. 18(1), pages 140-168, February.
    9. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, October.
    10. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    11. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    12. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    13. Naoto Kunitomo, 2012. "An optimal modification of the LIML estimation for many instruments and persistent heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 881-910, October.
    14. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    15. Andrews, Donald W.K. & Stock, James H., 2007. "Testing with many weak instruments," Journal of Econometrics, Elsevier, vol. 138(1), pages 24-46, May.
    16. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    17. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    18. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    19. Chioda, Laura & Jansson, Michael, 2009. "Optimal Invariant Inference When The Number Of Instruments Is Large," Econometric Theory, Cambridge University Press, vol. 25(3), pages 793-805, June.
    20. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    21. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-841, May.
    22. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    23. Donald, Stephen G. & Newey, Whitney K., 2000. "A jackknife interpretation of the continuous updating estimator," Economics Letters, Elsevier, vol. 67(3), pages 239-243, June.
    24. Ploeg, Jan van der & Bekker, Paul A., 1995. "Efficiency bounds for instrumental variable estimators under group-asymptotics," Research Report 95B24, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    25. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    26. Hasselt, Martijn van, 2010. "Many Instruments Asymptotic Approximations Under Nonnormal Error Distributions," Econometric Theory, Cambridge University Press, vol. 26(2), pages 633-645, April.
    27. Phillips, Garry D A & Hale, C, 1977. "The Bias of Instrumental Variable Estimators of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(1), pages 219-228, February.
    28. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    29. repec:dgr:rugsom:95b24 is not listed on IDEAS
    30. Jinyong Hahn & Atsushi Inoue, 2002. "A Monte Carlo Comparison Of Various Asymptotic Approximations To The Distribution Of Instrumental Variables Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 21(3), pages 309-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed S. Y. Omran & Mohammad A. A. Zaid & Aladdin Dwekat, 2021. "The relationship between integrated reporting and corporate environmental performance: A green trial," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(1), pages 427-445, January.
    2. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    3. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "A specification test for the strength of instrumental variables," Papers 2302.14396, arXiv.org.
    4. Bekker, Paul & Wansbeek, Tom, 2016. "Simple many-instruments robust standard errors through concentrated instrumental variables," Economics Letters, Elsevier, vol. 149(C), pages 52-55.
    5. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.
    6. Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
    7. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.
    8. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    9. Tom Boot & Didier Nibbering, 2024. "Inference on LATEs with covariates," Papers 2402.12607, arXiv.org.
    10. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    11. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    12. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
    13. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    14. Crudu, F.; & Neri, L.; & Tiezzi, S.;, 2018. "Family Ties and Children Obesity in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 18/09, HEDG, c/o Department of Economics, University of York.
    15. Tom Boot & Johannes W. Ligtenberg, 2023. "Identification- and many instrument-robust inference via invariant moment conditions," Papers 2303.07822, arXiv.org, revised Sep 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekker, Paul A. & Crudu, Federico, 2012. "Symmetric Jackknife Instrumental Variable Estimation," MPRA Paper 37853, University Library of Munich, Germany.
    2. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    3. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    4. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    5. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    6. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    7. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    8. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    9. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    10. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    11. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    12. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    13. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    14. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    15. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    16. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    17. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    18. Tom Boot & Johannes W. Ligtenberg, 2023. "Identification- and many instrument-robust inference via invariant moment conditions," Papers 2303.07822, arXiv.org, revised Sep 2023.
    19. Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," LSE Research Online Documents on Economics 111065, London School of Economics and Political Science, LSE Library.
    20. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Instrumental variables; Heteroskedasticity; Many instruments; Jackknife;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:185:y:2015:i:2:p:332-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.