IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v21y2002i3p309-336.html
   My bibliography  Save this article

A Monte Carlo Comparison Of Various Asymptotic Approximations To The Distribution Of Instrumental Variables Estimators

Author

Listed:
  • Jinyong Hahn
  • Atsushi Inoue

Abstract

We examine empirical relevance of three alternative asymptotic approximations to the distribution of instrumental variables estimators by Monte Carlo experiments. We find that conventional asymptotics provides a reasonable approximation to the actual distribution of instrumental variables estimators when the sample size is reasonably large. For most sample sizes, we find Bekker[11] asymptotics provides reasonably good approximation even when the first stage R2 is very small. We conclude that reporting Bekker[11] confidence interval would suffice for most microeconometric (cross-sectional) applications, and the comparative advantage of Staiger and Stock[5] asymptotic approximation is in applications with sample sizes typical in macroeconometric (time series) applications.

Suggested Citation

  • Jinyong Hahn & Atsushi Inoue, 2002. "A Monte Carlo Comparison Of Various Asymptotic Approximations To The Distribution Of Instrumental Variables Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 21(3), pages 309-336.
  • Handle: RePEc:taf:emetrv:v:21:y:2002:i:3:p:309-336
    DOI: 10.1081/ETC-120015786
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1081/ETC-120015786
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-298, May.
    2. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    3. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.
    4. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    5. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    6. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-183, January.
    7. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    8. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    9. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    2. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    3. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    4. Bekker, Paul A. & Crudu, Federico, 2012. "Symmetric Jackknife Instrumental Variable Estimation," MPRA Paper 37853, University Library of Munich, Germany.
    5. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    6. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    7. Hall, Alastair R. & Han, Sanggohn & Boldea, Otilia, 2008. "Inference regarding multiple structural changes in linear models estimated via two stage least squares," MPRA Paper 9251, University Library of Munich, Germany, revised 20 Jun 2008.
    8. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    9. Park, Albert & Brandt, Loren & Giles, John, 2003. "Competition under credit rationing: theory and evidence from rural China," Journal of Development Economics, Elsevier, vol. 71(2), pages 463-495, August.
    10. repec:eme:aecozz:s0731-905320140000033013 is not listed on IDEAS
    11. Neil Kellard & Denise Osborn & Jerry Coakley & Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2015. "Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 741-762, September.
    12. Abutaliev, Albert & Anatolyev, Stanislav, 2013. "Asymptotic variance under many instruments: Numerical computations," Economics Letters, Elsevier, vol. 118(2), pages 272-274.
    13. Hall, Alastair R. & Han, Sanggohn & Boldea, Otilia, 2012. "Inference regarding multiple structural changes in linear models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 281-302.
    14. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    15. Kazuhiko Hayakawa, 2006. "Efficient GMM Estimation of Dynamic Panel Data Models Where Large Heterogeneity May Be Present," Hi-Stat Discussion Paper Series d05-130, Institute of Economic Research, Hitotsubashi University.
    16. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    17. Kiviet, Jan F. & Niemczyk, Jerzy, 2007. "The asymptotic and finite sample distributions of OLS and simple IV in simultaneous equations," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3296-3318, April.
    18. Hall, Alastair R. & Han, Sanggohn & Boldea, Otilia, 2008. "Asymptotic Distribution Theory for Break Point Estimators in Models Estimated via 2SLS," MPRA Paper 9472, University Library of Munich, Germany.
    19. Jan F. Kiviet & Jerzy Niemczyk, 2014. "On the Limiting and Empirical Distributions of IV Estimators When Some of the Instruments are Actually Endogenous," Advances in Econometrics,in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 425-490 Emerald Publishing Ltd.
    20. Mardi Dungey & Vitali Alexeev & Jing Tian & Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91, pages 1-24, June.

    More about this item

    Keywords

    Many instruments; Weak instruments; JEL Classification : C31;

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:21:y:2002:i:3:p:309-336. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.