IDEAS home Printed from https://ideas.repec.org/p/jhu/papers/566.html
   My bibliography  Save this paper

Instrumental Variable Estimation with Heteroskedasticity and Many Instruments

Author

Listed:
  • Hausman
  • Newey
  • Woutersen
  • Chao
  • Swanson

Abstract

This paper gives a relatively simple, well behaved solution to the problem of many instruments in heteroskedastic data. Such settings are common in microeconometric applications where many instruments are used to improve efficiency and allowance for heteroskedasticity is generally important. The solution is a Fuller (1977) like estimator and standard errors that are robust to heteroskedasticity and many instruments. We show that the estimator has finite moments and high asymptotic efficiency in a range of cases. The standard errors are easy to compute, being likeWhite's (1982), with additional terms that account for many instruments. They are consistent under standard, many instrument, and many weak instrument asymptotics. Based on a series of Monte Carlo experiments, we find that the estimators perform as well as LIML or Fuller (1977) under homoskedasticity, and have much lower bias and dispersion under heteroskedasticity, in nearly all cases considered.

Suggested Citation

  • Hausman & Newey & Woutersen & Chao & Swanson, 2009. "Instrumental Variable Estimation with Heteroskedasticity and Many Instruments," Economics Working Paper Archive 566, The Johns Hopkins University,Department of Economics.
  • Handle: RePEc:jhu:papers:566
    as

    Download full text from publisher

    File URL: http://www.econ2.jhu.edu/REPEC/papers/wp566.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    2. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
    3. Phillips, Garry D A & Hale, C, 1977. "The Bias of Instrumental Variable Estimators of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(1), pages 219-228, February.
    4. Andrews, Donald W.K. & Stock, James H., 2007. "Testing with many weak instruments," Journal of Econometrics, Elsevier, vol. 138(1), pages 24-46, May.
    5. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    6. Jinyong Hahn & Atsushi Inoue, 2002. "A Monte Carlo Comparison Of Various Asymptotic Approximations To The Distribution Of Instrumental Variables Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 21(3), pages 309-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekker, Paul A. & Crudu, Federico, 2012. "Symmetric Jackknife Instrumental Variable Estimation," MPRA Paper 37853, University Library of Munich, Germany.
    2. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    3. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    4. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    5. John Chao & Jerry Hausman & Whitney Newey & Norman Swanson & Tiemen Woutersen, 2013. "Combining Two Consistent Estimators," Departmental Working Papers 201310, Rutgers University, Department of Economics.
    6. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    7. Russell Davidson & James G. MacKinnon, 2006. "The case against JIVE," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 827-833, September.
    8. Devereux, Paul J., 2007. "Improved Errors-in-Variables Estimators for Grouped Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 278-287, July.
    9. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    10. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
    11. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    12. Phillips, Garry D.A. & Liu-Evans, Gareth, 2016. "Approximating and reducing bias in 2SLS estimation of dynamic simultaneous equation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 734-762.
    13. Isaiah Andrews & Timothy B. Armstrong, 2015. "Unbiased Instrumental Variables Estimation under Known First-Stage Sign," Cowles Foundation Discussion Papers 1984R3, Cowles Foundation for Research in Economics, Yale University, revised Oct 2015.
    14. Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.
    15. Paul J. Devereux & Daniel A. Ackerberg, 2006. "Comment on 'The case against JIVE'," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 835-838.
    16. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    17. Russell Davidson & James G. MacKinnon, 2007. "Moments of IV and JIVE estimators," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 541-553, November.
    18. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    19. Norman R. Swanson & John C. Chao, 2004. "Estimation and Testing Using Jackknife IV in Heteroskedastic Regressions with Many Weak Instruments," Econometric Society 2004 Far Eastern Meetings 668, Econometric Society.
    20. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jhu:papers:566. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dejhuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alan Fisher (email available below). General contact details of provider: https://edirc.repec.org/data/dejhuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.