IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/22-07.html

Instrumental variable estimation with heteroskedasticity and many instruments

Author

Listed:
  • Jerry Hausman

    (Institute for Fiscal Studies and MIT)

  • Whitney K. Newey

    (Institute for Fiscal Studies and MIT)

  • Tiemen M. Woutersen

    (Institute for Fiscal Studies and John Hopkins University)

  • John Chao

    (Institute for Fiscal Studies)

  • Norman Swanson

    (Institute for Fiscal Studies)

Abstract

It is common practice in econometrics to correct for heteroskedasticity.This paper corrects instrumental variables estimators with many instruments for heteroskedasticity.We give heteroskedasticity robust versions of the limited information maximum likelihood (LIML) and Fuller (1977, FULL) estimators; as well as heteroskedasticity consistent standard errors thereof. The estimators are based on removing the own observation terms in the numerator of the LIML variance ratio. We derive asymptotic properties of the estimators under many and many weak instruments setups. Based on a series of Monte Carlo experiments, we find that the estimators perform as well as LIML or FULL under homoskedasticity, and have much lower bias and dispersion under heteroskedasticity, in nearly all cases considered.

Suggested Citation

  • Jerry Hausman & Whitney K. Newey & Tiemen M. Woutersen & John Chao & Norman Swanson, 2007. "Instrumental variable estimation with heteroskedasticity and many instruments," CeMMAP working papers CWP22/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:22/07
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp2207.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:22/07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.