IDEAS home Printed from https://ideas.repec.org/r/rut/rutres/201111.html
   My bibliography  Save this item

Instrumental Variable Estimation with Heteroskedasticity and Many Instruments

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Morricone, Serena & Munari, Federico & Oriani, Raffaele & de Rassenfosse, Gaetan, 2017. "Commercialization Strategy and IPO Underpricing," Research Policy, Elsevier, vol. 46(6), pages 1133-1141.
  2. John Chao & Jerry Hausman & Whitney Newey & Norman Swanson & Tiemen Woutersen, 2013. "An Expository Note on the Existence of Moments of Fuller and HFUL Estimators," Departmental Working Papers 201311, Rutgers University, Department of Economics.
  3. Steven Andrew Culpepper & Herman Aguinis & Justin L. Kern & Roger Millsap, 2019. "High-Stakes Testing Case Study: A Latent Variable Approach for Assessing Measurement and Prediction Invariance," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 285-309, March.
  4. Frank Windmeijer, 2018. "Testing Over- and Underidentification in Linear Models, with Applications to Dynamic Panel Data and Asset-Pricing Models," Bristol Economics Discussion Papers 18/696, School of Economics, University of Bristol, UK.
  5. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
  6. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
  7. Yukitoshi Matsushita & Taisuke Otsu, 2020. "Jackknife Lagrange multiplier test with many weak instruments," STICERD - Econometrics Paper Series 613, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  8. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
  9. Naoto Kunitomo, 2008. "An Optimal Modification of the LIML Estimation for Many Instruments and Persistent Heteroscedasticity," CIRJE F-Series CIRJE-F-576, CIRJE, Faculty of Economics, University of Tokyo.
  10. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
  11. Bekker, Paul & Wansbeek, Tom, 2016. "Simple many-instruments robust standard errors through concentrated instrumental variables," Economics Letters, Elsevier, vol. 149(C), pages 52-55.
  12. Abutaliev, Albert & Anatolyev, Stanislav, 2013. "Asymptotic variance under many instruments: Numerical computations," Economics Letters, Elsevier, vol. 118(2), pages 272-274.
  13. Orazio Attanasio & Peter Levell & Hamish Low & Virginia Sánchez-Marcos, 2015. "Aggregating Elasticities: Intensive and Extensive Margins of Female Labour Supply," NBER Working Papers 21315, National Bureau of Economic Research, Inc.
  14. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
  15. Naoto Kunitomo & Yukitoshi Matsushita, 2008. "Improving the Rank-Adjusted Anderson-Rubin Test with Many Instruments and Persistent Heteroscedasticity," CIRJE F-Series CIRJE-F-588, CIRJE, Faculty of Economics, University of Tokyo.
  16. Paul Goldsmith-Pinkham & Isaac Sorkin & Henry Swift, 2020. "Bartik Instruments: What, When, Why, and How," American Economic Review, American Economic Association, vol. 110(8), pages 2586-2624, August.
  17. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
  18. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
  19. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
  20. Elias Einiö, 2016. "The Loss of Production Work: Evidence from Quasi-Experimental Identification of Labour Demand Functions," CEP Discussion Papers dp1451, Centre for Economic Performance, LSE.
  21. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
  22. Eric French & Jae Song, 2014. "The Effect of Disability Insurance Receipt on Labor Supply," American Economic Journal: Economic Policy, American Economic Association, vol. 6(2), pages 291-337, May.
  23. Pierre Chausse, 2017. "Regularized Empirical Likelihood as a Solution to the No Moment," Working Papers 1708, University of Waterloo, Department of Economics, revised Nov 2017.
  24. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
  25. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
  26. Stanislav Anatolyev, 2013. "Instrumental variables estimation and inference in the presence of many exogenous regressors," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 27-72, February.
  27. Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.
  28. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
  29. Jorge Gallego & Stanislao Maldonado & Lorena Trujillo, 2018. "Blessing a Curse? Institutional Reform and Resource Booms in Colombia," Working Papers 122, Peruvian Economic Association.
  30. Calhoun, Gray, 2011. "Hypothesis testing in linear regression when k/n is large," Journal of Econometrics, Elsevier, vol. 165(2), pages 163-174.
  31. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
  32. Einiö, Elias, 2016. "The loss of production work: evidence from quasiexperimental identification of labour demand functions," LSE Research Online Documents on Economics 69019, London School of Economics and Political Science, LSE Library.
  33. Bekker, Paul A. & Crudu, Federico, 2012. "Symmetric Jackknife Instrumental Variable Estimation," MPRA Paper 37853, University Library of Munich, Germany.
  34. Vahagn Galstyan, 2018. "LIML estimation of import demand and export supply elasticities," Applied Economics, Taylor & Francis Journals, vol. 50(17), pages 1910-1918, April.
  35. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
  36. Naoto Kunitomo, 2012. "An optimal modification of the LIML estimation for many instruments and persistent heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 881-910, October.
  37. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
  38. Yukitoshi Matsushita & Taisuke Otsu, 2020. "Second-order refinements for t-ratios with many instruments," STICERD - Econometrics Paper Series 612, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  39. Federico Crudu & Giovanni Mellace & Zsolt Sandor, 2017. "Inference in instrumental variables models with heteroskedasticity and many instruments," Department of Economics University of Siena 761, Department of Economics, University of Siena.
  40. Steven F. Lehrer & Weili Ding, 2017. "Are genetic markers of interest for economic research?," IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 6(1), pages 1-23, December.
  41. Jan F. Kiviet & Qu Feng, 2014. "Efficiency Gains by Modifying GMM Estimation in Linear Models under Heteroskedasticity," UvA-Econometrics Working Papers 14-06, Universiteit van Amsterdam, Dept. of Econometrics.
  42. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
  43. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
  44. Crudu, Federico & Sándor, Zsolt, 2011. "On the finite-sample properties of conditional empirical likelihood estimators," MPRA Paper 34116, University Library of Munich, Germany.
  45. Tom Wansbeek & Dennis Prak, 2017. "LIML in the static linear panel data model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 385-395, March.
  46. Einiö, Elias, 2015. "The Loss of Production Work: Identification of Demand Shifts Based on Local Soviet Trade Shocks," Working Papers 61, VATT Institute for Economic Research.
  47. Yukitoshi Matsushita & Taisuke Otsu, 2019. "Jackknife, small bandwidth and high-dimensional asymptotics," STICERD - Econometrics Paper Series 605, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  48. Eric French & Jae Song, 2012. "The effect of Disability Insurance receipt on labor supply: a dynamic analysis," Working Paper Series WP-2012-12, Federal Reserve Bank of Chicago.
  49. Hübler, Olaf, 2013. "Methods in empirical economics - a selective review with applications," Hannover Economic Papers (HEP) dp-513, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  50. Ng Serena & Bai Jushan, 2009. "Selecting Instrumental Variables in a Data Rich Environment," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-34, April.
  51. Canay, Ivan A., 2010. "Simultaneous selection and weighting of moments in GMM using a trapezoidal kernel," Journal of Econometrics, Elsevier, vol. 156(2), pages 284-303, June.
  52. Antoine, Bertille & Lavergne, Pascal, 2014. "Conditional moment models under semi-strong identification," Journal of Econometrics, Elsevier, vol. 182(1), pages 59-69.
  53. Florens, Jean-Pierre & Van Bellegem, Sébastien, 2015. "Instrumental variable estimation in functional linear models," Journal of Econometrics, Elsevier, vol. 186(2), pages 465-476.
  54. Priebe, Jan, 2011. "Child Costs and the Causal Effect of Fertility on Female Labor Supply: An investigation for Indonesia 1993-2008," Proceedings of the German Development Economics Conference, Berlin 2011 67, Verein für Socialpolitik, Research Committee Development Economics.
  55. Wang, Wenjie, 2020. "On Bootstrap Validity for the Test of Overidentifying Restrictions with Many Instruments and Heteroskedasticity," MPRA Paper 104858, University Library of Munich, Germany.
  56. Jaeger, David A. & Parys, Juliane, 2009. "On the Sensitivity of Return to Schooling Estimates to Estimation Methods, Model Specification, and Influential Outliers If Identification Is Weak," IZA Discussion Papers 3961, Institute of Labor Economics (IZA).
  57. Van Bellegem, Sébastien & Florens, Jean-Pierre, 2014. "Instrumental variable estimation in functional linear models," LIDAM Discussion Papers CORE 2014056, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.