Treatment Effects Inference with High-Dimensional Instruments and Control Variables
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Anna Mikusheva & Liyang Sun, 2022.
"Inference with Many Weak Instruments,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(5), pages 2663-2686.
- Anna Mikusheva & Liyang Sun, 2020. "Inference with Many Weak Instruments," Papers 2004.12445, arXiv.org, revised Oct 2021.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016.
"Post-Selection Inference for Generalized Linear Models With Many Controls,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Post-Selection Inference for Generalized Linear Models with Many Controls," Papers 1304.3969, arXiv.org, revised Mar 2016.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments,"
American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," Papers 1501.03185, arXiv.org.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers 02/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers CWP02/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
- Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019.
"Two-Step Estimation and Inference with Possibly Many Included Covariates,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
- Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2018. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Papers 1807.10100, arXiv.org.
- Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Department of Economics, Working Paper Series qt86c7x315, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," University of California at San Diego, Economics Working Paper Series qt86c7x315, Department of Economics, UC San Diego.
- Damian Kozbur, 2017.
"Testing-Based Forward Model Selection,"
American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
- Damian Kozbur, 2015. "Testing-Based Forward Model Selection," ECON - Working Papers 283, Department of Economics - University of Zurich, revised Apr 2018.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
- Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
- X Liu & S Zheng & X Feng, 2020. "Estimation of error variance via ridge regression," Biometrika, Biometrika Trust, vol. 107(2), pages 481-488.
- Joshua D. Angrist & Alan B. Keueger, 1991.
"Does Compulsory School Attendance Affect Schooling and Earnings?,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
- Joshua D. Angrist & Alan B. Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," Working Papers 653, Princeton University, Department of Economics, Industrial Relations Section..
- Joshua D. Angrist & Alan B. Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," NBER Working Papers 3572, National Bureau of Economic Research, Inc.
- Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
- Yaowu Liu & Jun Xie, 2020. "Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 393-402, January.
- Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012.
"Instrumental variable estimation with heteroskedasticity and many instruments,"
Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
- Jerry Hausman & Whitney K. Newey & Tiemen M. Woutersen & John Chao & Norman Swanson, 2007. "Instrumental variable estimation with heteroskedasticity and many instruments," CeMMAP working papers CWP22/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hausman & Newey & Woutersen & Chao & Swanson, 2009. "Instrumental Variable Estimation with Heteroskedasticity and Many Instruments," Economics Working Paper Archive 566, The Johns Hopkins University,Department of Economics.
- Norman R. Swanson & John C. Chao & Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen, 2011. "Instrumental Variable Estimation with Heteroskedasticity and Many Instruments," Departmental Working Papers 201111, Rutgers University, Department of Economics.
- Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- A. Belloni & V. Chernozhukov & K. Kato, 2015. "Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems," Biometrika, Biometrika Trust, vol. 102(1), pages 77-94.
- Angrist, J D & Imbens, G W & Krueger, A B, 1999.
"Jackknife Instrumental Variables Estimation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
- Joshua D. Angrist & Guido W. Imbens & Alan Krueger, 1995. "Jackknife Instrumental Variables Estimation," NBER Technical Working Papers 0172, National Bureau of Economic Research, Inc.
- Gold, David & Lederer, Johannes & Tao, Jing, 2020. "Inference for high-dimensional instrumental variables regression," Journal of Econometrics, Elsevier, vol. 217(1), pages 79-111.
- He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, June.
- Damian Kozbur, 2020. "Analysis of Testing‐Based Forward Model Selection," Econometrica, Econometric Society, vol. 88(5), pages 2147-2173, September.
- Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
- Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
- Zhu, Ying, 2018. "Sparse linear models and l1-regularized 2SLS with high-dimensional endogenous regressors and instruments," Journal of Econometrics, Elsevier, vol. 202(2), pages 196-213.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Hongwei Shi & Xinyu Zhang & Xu Guo & Baihua He & Chenyang Wang, 2025. "Testing overidentifying restrictions on high-dimensional instruments and covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(2), pages 331-352, April.
- Anna Mikusheva & Liyang Sun, 2024.
"Weak identification with many instruments,"
The Econometrics Journal, Royal Economic Society, vol. 27(2), pages -28.
- Anna Mikusheva & Liyang Sun, 2023. "Weak Identification with Many Instruments," Papers 2308.09535, arXiv.org, revised Jan 2024.
- Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
- Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
- Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
- Thomas Wiemann, 2023. "Optimal Categorical Instrumental Variables," Papers 2311.17021, arXiv.org, revised May 2024.
- Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016.
"Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk,"
Papers
1607.00286, arXiv.org, revised Oct 2019.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers 54/17, Institute for Fiscal Studies.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers CWP54/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020.
"Ill-posed estimation in high-dimensional models with instrumental variables,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
- Christoph Breunig & Enno Mammen & Anna Simoni, 2018. "Ill-posed Estimation in High-Dimensional Models with Instrumental Variables," Papers 1806.00666, arXiv.org, revised Aug 2020.
- Christoph Breunig & Enno Mammen & Anna Simoni, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Post-Print hal-03089879, HAL.
- Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Tom Boot & Didier Nibbering, 2024. "Inference on LATEs with covariates," Papers 2402.12607, arXiv.org, revised Nov 2024.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019.
"Non-separable models with high-dimensional data,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2017. "Non-separable Models with High-dimensional Data," Economics and Statistics Working Papers 15-2017, Singapore Management University, School of Economics.
- Jooyoung Cha & Harold D. Chiang & Yuya Sasaki, 2021. "Inference in high-dimensional regression models without the exact or $L^p$ sparsity," Papers 2108.09520, arXiv.org, revised Dec 2022.
- Dennis Lim & Wenjie Wang & Yichong Zhang, 2024. "A Dimension-Agnostic Bootstrap Anderson-Rubin Test For Instrumental Variable Regressions," Papers 2412.01603, arXiv.org.
- Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
- Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.20149. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.