IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v8y2020i1p182-208n1.html
   My bibliography  Save this article

Instruments with Heterogeneous Effects: Bias, Monotonicity, and Localness

Author

Listed:
  • Huntington-Klein Nick

    (Seattle University, SeattleUnited States of America)

Abstract

In Instrumental Variables (IV) estimation, the effect of an instrument on an endogenous variable may vary across the sample. In this case, IV produces a local average treatment effect (LATE), and if monotonicity does not hold, then no effect of interest is identified. In this paper, I calculate the weighted average of treatment effects that is identified under general first-stage effect heterogeneity, which is generally not the average treatment effect among those affected by the instrument. I then describe a simple set of data-driven approaches to modeling variation in the effect of the instrument. These approaches identify a Super-Local Average Treatment Effect (SLATE) that weights treatment effects by the corresponding instrument effect more heavily than LATE. Even when first-stage heterogeneity is poorly modeled, these approaches considerably reduce the impact of small-sample bias compared to standard IV and unbiased weak-instrument IV methods, and can also make results more robust to violations of monotonicity. In application to a published study with a strong instrument, the preferred approach reduces error by about 19% in small (N ≈ 1, 000) subsamples, and by about 13% in larger (N ≈ 33, 000) subsamples.

Suggested Citation

  • Huntington-Klein Nick, 2020. "Instruments with Heterogeneous Effects: Bias, Monotonicity, and Localness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 182-208, January.
  • Handle: RePEc:bpj:causin:v:8:y:2020:i:1:p:182-208:n:1
    DOI: 10.1515/jci-2020-0011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2020-0011
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2020-0011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    2. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    5. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    6. Clément de Chaisemartin, 2017. "Tolerating defiance? Local average treatment effects without monotonicity," Quantitative Economics, Econometric Society, vol. 8(2), pages 367-396, July.
    7. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    8. Sarsons, Heather, 2015. "Rainfall and conflict: A cautionary tale," Journal of Development Economics, Elsevier, vol. 115(C), pages 62-72.
    9. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366, Elsevier.
    10. Maximilian Kasy, 2014. "Instrumental Variables with Unrestricted Heterogeneity and Continuous Treatment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(4), pages 1614-1636.
    11. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    12. Ismael Mourifié & Yuanyuan Wan, 2017. "Testing Local Average Treatment Effect Assumptions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 305-313, May.
    13. Christian M Dahl & Martin Huber & Giovanni Mellace, 2023. "It is never too LATE: a new look at local average treatment effects with or without defiers," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 378-404.
    14. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    15. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    16. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    17. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    18. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 70, Elsevier.
    19. Peter M. Aronow & Cyrus Samii, 2016. "Does Regression Produce Representative Estimates of Causal Effects?," American Journal of Political Science, John Wiley & Sons, vol. 60(1), pages 250-267, January.
    20. Edward Miguel & Shanker Satyanath, 2011. "Re-examining Economic Shocks and Civil Conflict," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 228-232, October.
    21. Joshua D. Angrist & Victor Lavy, 1999. "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 533-575.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Coussens & Jann Spiess, 2021. "Improving Inference from Simple Instruments through Compliance Estimation," Papers 2108.03726, arXiv.org.
    2. Tymon Sloczynski, 2021. "When Should We (Not) Interpret Linear IV Estimands as LATE?," CESifo Working Paper Series 9064, CESifo.
    3. Nadja van ’t Hoff & Arthur Lewbel & Giovanni Mellace, 2023. "Limited Monotonicity and the Combined Compliers LATE," Boston College Working Papers in Economics 1059, Boston College Department of Economics, revised 25 Apr 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huntington-Klein Nick, 2020. "Instruments with Heterogeneous Effects: Bias, Monotonicity, and Localness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 182-208, January.
    2. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org.
    3. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    4. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    5. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    6. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    7. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    8. Angrist, Joshua & Kolesár, Michal, 2024. "One instrument to rule them all: The bias and coverage of just-ID IV," Journal of Econometrics, Elsevier, vol. 240(2).
    9. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    10. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    11. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    12. Shoya Ishimaru, 2024. "Empirical Decomposition of the IV-OLS Gap with Heterogeneous and Nonlinear Effects," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 505-520, March.
    13. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    14. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    15. Michal Kolesár, 2013. "Estimation in an Instrumental Variables Model With Treatment Effect Heterogeneity," Working Papers 2013-2, Princeton University. Economics Department..
    16. Leonard Goff, 2024. "When does IV identification not restrict outcomes?," Papers 2406.02835, arXiv.org, revised Sep 2024.
    17. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    18. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    19. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    20. Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:8:y:2020:i:1:p:182-208:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.