IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/12574.html
   My bibliography  Save this paper

Understanding Instrumental Variables in Models with Essential Heterogeneity

Author

Listed:
  • James J. Heckman
  • Sergio Urzua
  • Edward J. Vytlacil

Abstract

This paper examines the properties of instrumental variables (IV) applied to models with essential heterogeneity, that is, models where responses to interventions are heterogeneous and agents adopt treatments (participate in programs) with at least partial knowledge of their idiosyncratic response. We analyze two-outcome and multiple-outcome models including ordered and unordered choice models. We allow for transition-specific and general instruments. We generalize previous analyses by developing weights for treatment effects for general instruments. We develop a simple test for the presence of essential heterogeneity. We note the asymmetry of the model of essential heterogeneity: outcomes of choices are heterogeneous in a general way; choices are not. When both choices and outcomes are permitted to be symmetrically heterogeneous, the method of IV breaks down for estimating treatment parameters.

Suggested Citation

  • James J. Heckman & Sergio Urzua & Edward J. Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," NBER Working Papers 12574, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:12574
    Note: DAE LS PE POL
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w12574.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 71, Elsevier.
    2. Flavio Cunha & James J. Heckman & Salvador Navarro, 2007. "The Identification And Economic Content Of Ordered Choice Models With Stochastic Thresholds," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1273-1309, November.
    3. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    4. James J. Heckman & Lance J. Lochner & Petra E. Todd, 2008. "Earnings Functions and Rates of Return," Journal of Human Capital, University of Chicago Press, vol. 2(1), pages 1-31.
    5. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    6. Gordon B. Dahl, 2002. "Mobility and the Return to Education: Testing a Roy Model with Multiple Markets," Econometrica, Econometric Society, vol. 70(6), pages 2367-2420, November.
    7. Yitzhaki, Shlomo, 1996. "On Using Linear Regressions in Welfare Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 478-486, October.
    8. Heckman, James J. & Vytlacil, Edward J., 2000. "The relationship between treatment parameters within a latent variable framework," Economics Letters, Elsevier, vol. 66(1), pages 33-39, January.
    9. James Heckman & Justin L. Tobias & Edward Vytlacil, 2003. "Simple Estimators for Treatment Parameters in a Latent-Variable Framework," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 748-755, August.
    10. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 70, Elsevier.
    11. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    12. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    13. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    14. Flavio Cunha & James J. Heckman & Salvador Navarro, 2007. "The Identification & Economic Content of Ordered Choice Models with Stochastic Thresholds," Working Papers 200726, Geary Institute, University College Dublin.
    15. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    16. Edward Vytlacil, 2006. "A Note on Additive Separability and Latent Index Models of Binary Choice: Representation Results," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(4), pages 515-518, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    2. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    3. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    4. Stefan Boes, 2013. "Nonparametric analysis of treatment effects in ordered response models," Empirical Economics, Springer, vol. 44(1), pages 81-109, February.
    5. Heckman, James J. & Schmierer, Daniel & Urzua, Sergio, 2010. "Testing the correlated random coefficient model," Journal of Econometrics, Elsevier, vol. 158(2), pages 177-203, October.
    6. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    7. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    8. Stefan Boes, 2009. "Partial Identification of Discrete Counterfactual Distributions with Sequential Update of Information," SOI - Working Papers 0918, Socioeconomic Institute - University of Zurich.
    9. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    10. Arild Aakvik & James J. Heckman & Edward J. Vytlacil, 2000. "Treatment Effects for Discrete Outcomes when Responses to Treatment Vary Among Observationally Identical Persons: An Application to Norwegian ..," NBER Technical Working Papers 0262, National Bureau of Economic Research, Inc.
    11. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    12. Heckman, James J. & Schmierer, Daniel, 2010. "Tests of hypotheses arising in the correlated random coefficient model," Economic Modelling, Elsevier, vol. 27(6), pages 1355-1367, November.
    13. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    14. Mahoukede, Kinkingninhoun-Medagbe & Aliou, Diagne & Gauthier, Biaou, 2015. "Impact of Use of Credit in rice farming on rice Productivity and Income in Benin," 2015 Conference, August 9-14, 2015, Milan, Italy 211635, International Association of Agricultural Economists.
    15. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    16. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    17. Markus Gangl & Thomas A. DiPrete, 2004. "Kausalanalyse durch Matchingverfahren," Discussion Papers of DIW Berlin 401, DIW Berlin, German Institute for Economic Research.
    18. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    19. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    20. Bonou, Alice & Diagne, Aliou & Biaou, Gauthier, 2013. "Agricultural technology adoption and rice varietal diversity: A Local Average Treatment Effect (LATE) Approach for rural Benin," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 158482, African Association of Agricultural Economists (AAAE).

    More about this item

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:12574. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.