IDEAS home Printed from https://ideas.repec.org/h/eee/labchp/v5y2024icp1-114.html
   My bibliography  Save this book chapter

Instrumental variables with unobserved heterogeneity in treatment effects

Author

Listed:
  • Mogstad, Magne
  • Torgovitsky, Alexander

Abstract

This chapter synthesizes and critically reviews the modern instrumental variables (IV) literature that allows for unobserved heterogeneity in treatment effects (UHTE). We start by discussing why UHTE is often an essential aspect of IV applications in economics and we explain the conceptual challenges raised by allowing for it. Then we review and survey two general strategies for incorporating UHTE. The first strategy is to continue to use linear IV estimators designed for classical constant (homogeneous) treatment effect models, acknowledge their likely misspecification, and attempt to reverse engineer an attractive interpretation in the presence of UHTE. This strategy commonly leads to interpretations of linear IV that involve local average treatment effects (LATEs). We review the various ways in which the use and justification of LATE interpretations have expanded and contracted since their introduction in the early 1990s. The second strategy is to forward engineer new estimators that explicitly allow for UHTE. This strategy has its roots in the Gronau-Heckman selection model of the 1970s, ideas from which have been revitalized through marginal treatment effect (MTE) analysis. We discuss implementation of MTE methods and draw connections with related control function and bounding methods that are scattered throughout the econometric and causal inference literature.

Suggested Citation

  • Mogstad, Magne & Torgovitsky, Alexander, 2024. "Instrumental variables with unobserved heterogeneity in treatment effects," Handbook of Labor Economics,, Elsevier.
  • Handle: RePEc:eee:labchp:v:5:y:2024:i:c:p:1-114
    DOI: 10.1016/bs.heslab.2024.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1573446324000038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/bs.heslab.2024.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:labchp:v:5:y:2024:i:c:p:1-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.