IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/26028.html
   My bibliography  Save this paper

The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation

Author

Listed:
  • Robert A. Moffitt
  • Matthew V. Zahn

Abstract

Existing research on the static effects of the manipulation of welfare program benefit parameters on labor supply has allowed only restrictive forms of heterogeneity in preferences. Yet preference heterogeneity implies that the marginal effects on labor supply of welfare expansions and contractions may differ in different time periods with different populations and which sweep out different portions of the distribution of preferences. A new examination of the heavily studied AFDC program uses variation in state-level administrative barriers to entering the program in the late 1980s and early 1990s to estimate the marginal labor supply effects of changes in program participation induced by that variation. The estimates are obtained from a theory-consistent reduced form model which allows for a nonparametric specification of how changes in welfare program participation affect labor supply on the margin. Estimates using a form of local instrumental variables show that the marginal treatment effects are quadratic, rising and then falling as participation rates rise (i.e., becoming more negative then less negative on hours of work). The average work disincentive is not large but that masks some margins where effects are close to zero and some which are sizable. Traditional IV which estimates a weighted average of marginal effects gives a misleading picture of marginal responses. A counterfactual exercise which applies the estimates to three historical reform periods in 1967, 1981, and 1996 when the program tax rate was significantly altered shows that marginal labor supply responses differed in each period because of differences in the level of participation in the period and the composition of who was on the program.

Suggested Citation

  • Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:26028
    Note: PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w26028.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moffitt, Robert, 1992. "Incentive Effects of the U.S. Welfare System: A Review," Journal of Economic Literature, American Economic Association, vol. 30(1), pages 1-61, March.
    2. Joseph J. Doyle Jr., 2007. "Child Protection and Child Outcomes: Measuring the Effects of Foster Care," American Economic Review, American Economic Association, vol. 97(5), pages 1583-1610, December.
    3. Richard Blundell & Monica Costa Dias & Costas Meghir & Jonathan Shaw, 2016. "Female Labor Supply, Human Capital, and Welfare Reform," Econometrica, Econometric Society, vol. 84, pages 1705-1753, September.
    4. David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022. "Valid t-Ratio Inference for IV," American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
    5. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 71, Elsevier.
    6. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    7. Marc K. Chan, 2013. "A Dynamic Model of Welfare Reform," Econometrica, Econometric Society, vol. 81(3), pages 941-1001, May.
    8. Robert A. Moffitt, 2003. "The Temporary Assistance for Needy Families Program," NBER Chapters, in: Means-Tested Transfer Programs in the United States, pages 291-364, National Bureau of Economic Research, Inc.
    9. Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2356-2409.
    10. Amanda Kowalski, 2016. "Doing more when you're running LATE: Applying marginal treatment effect methods to examine treatment effect heterogeneity in experiments," Artefactual Field Experiments 00560, The Field Experiments Website.
    11. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    12. Keane, Michael & Moffitt, Robert, 1998. "A Structural Model of Multiple Welfare Program Participation and Labor Supply," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 553-589, August.
    13. J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6b.
    14. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    15. Joshua Angrist & Michal Kolesár, 2021. "One Instrument to Rule Them All: The Bias and Coverage of Just-ID IV," NBER Working Papers 29417, National Bureau of Economic Research, Inc.
    16. Marc K. Chan & Robert Moffitt, 2018. "Welfare Reform and the Labor Market," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 347-381, August.
    17. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    18. Robert A. Moffitt, 2016. "Economics of Means-Tested Transfer Programs in the United States, Volume 1," NBER Books, National Bureau of Economic Research, Inc, number moff14-1, March.
    19. Nichols, Albert L & Zeckhauser, Richard J, 1982. "Targeting Transfers through Restrictions on Recipients," American Economic Review, American Economic Association, vol. 72(2), pages 372-377, May.
    20. Moffitt, Robert, 1983. "An Economic Model of Welfare Stigma," American Economic Review, American Economic Association, vol. 73(5), pages 1023-1035, December.
    21. Hsiao,Cheng & Morimune,Kimio & Powell,James L. (ed.), 2001. "Nonlinear Statistical Modeling," Cambridge Books, Cambridge University Press, number 9780521662468, December.
    22. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    23. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    24. David S. Lee & Enrico Moretti & Matthew J. Butler, 2004. "Do Voters Affect or Elect Policies? Evidence from the U. S. House," The Quarterly Journal of Economics, Oxford University Press, vol. 119(3), pages 807-859.
    25. Michael P Keane & Sonya Krutikova & Timothy Neal, 2018. "The impact of child work on cognitive development: results from four Low to Middle Income countries," IFS Working Papers W18/29, Institute for Fiscal Studies.
    26. Beth Osborne Daponte & Seth Sanders & Lowell Taylor, 1999. "Why Do Low-Income Households not Use Food Stamps? Evidence from an Experiment," Journal of Human Resources, University of Wisconsin Press, vol. 34(3), pages 612-628.
    27. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    28. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    29. Nicole Maestas & Kathleen J. Mullen & Alexander Strand, 2013. "Does Disability Insurance Receipt Discourage Work? Using Examiner Assignment to Estimate Causal Effects of SSDI Receipt," American Economic Review, American Economic Association, vol. 103(5), pages 1797-1829, August.
    30. Anthony Bald & Eric Chyn & Justine Hastings & Margarita Machelett, 2022. "The Causal Impact of Removing Children from Abusive and Neglectful Homes," Journal of Political Economy, University of Chicago Press, vol. 130(7), pages 1919-1962.
    31. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    32. Robert A. Moffitt, 2003. "Means-Tested Transfer Programs in the United States," NBER Books, National Bureau of Economic Research, Inc, number moff03-1, March.
    33. J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6a.
    34. Magne Mogstad & Alexander Torgovitsky & Christopher R. Walters, 2021. "The Causal Interpretation of Two-Stage Least Squares with Multiple Instrumental Variables," American Economic Review, American Economic Association, vol. 111(11), pages 3663-3698, November.
    35. Robert A. Moffitt, 2003. "Introduction to "Means-Tested Transfer Programs in the United States"," NBER Chapters, in: Means-Tested Transfer Programs in the United States, pages 1-14, National Bureau of Economic Research, Inc.
    36. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    37. James P. Ziliak, 2007. "Making Work Pay: Changes in Effective Tax Rates and Guarantees in U.S. Transfer Programs, 1983–2002," Journal of Human Resources, University of Wisconsin Press, vol. 42(3).
    38. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
    39. Amanda E. Kowalski, 2016. "Doing More When You're Running LATE: Applying Marginal Treatment Effect Methods to Examine Treatment Effect Heterogeneity in Experiments for the Young and Privately Insured"," Cowles Foundation Discussion Papers 2045, Cowles Foundation for Research in Economics, Yale University.
    40. Joshua D. Angrist & Kathryn Graddy & Guido W. Imbens, 2000. "The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish," Review of Economic Studies, Oxford University Press, vol. 67(3), pages 499-527.
    41. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    42. Michael Keane & Timothy Neal, 2021. "A New Perspective on Weak Instruments," Discussion Papers 2021-05a, School of Economics, The University of New South Wales.
    43. Moffitt, Robert A. (ed.), 2016. "Economics of Means-Tested Transfer Programs in the United States, Volume I," National Bureau of Economic Research Books, University of Chicago Press, number 9780226370477, January.
    44. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    45. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moler-Zapata, S.; & Grieve, R.; & Basu, A.; & O'Neill, S.;, 2022. "How does a local Instrumental Variable Method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health, Econometrics and Data Group (HEDG) Working Papers 22/18, HEDG, c/o Department of Economics, University of York.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    2. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    3. Matthias Westphal & Daniel A Kamhöfer & Hendrik Schmitz, 2022. "Marginal College Wage Premiums Under Selection Into Employment [‘Identification of causal effects using instrumental variables’]," The Economic Journal, Royal Economic Society, vol. 132(646), pages 2231-2272.
    4. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    5. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    6. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    7. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    8. Daniel A Kamhöfer & Hendrik Schmitz & Matthias Westphal, 2019. "Heterogeneity in Marginal Non-Monetary Returns to Higher Education," Journal of the European Economic Association, European Economic Association, vol. 17(1), pages 205-244.
    9. Ivan A. Canay & Magne Mogstad & Jack Mountjoy, 2020. "On the Use of Outcome Tests for Detecting Bias in Decision Making," NBER Working Papers 27802, National Bureau of Economic Research, Inc.
    10. Felfe, Christina & Lalive, Rafael, 2018. "Does early child care affect children's development?," Journal of Public Economics, Elsevier, vol. 159(C), pages 33-53.
    11. Santiago Pereda Fernández, 2019. "Identification and estimation of triangular models with a binary treatment," Temi di discussione (Economic working papers) 1210, Bank of Italy, Economic Research and International Relations Area.
    12. Amanda E. Kowalski, 2018. "Behavior within a Clinical Trial and Implications for Mammography Guidelines," NBER Working Papers 25049, National Bureau of Economic Research, Inc.
    13. Stephen Coussens & Jann Spiess, 2021. "Improving Inference from Simple Instruments through Compliance Estimation," Papers 2108.03726, arXiv.org.
    14. Heckman, James J. & Schmierer, Daniel & Urzua, Sergio, 2010. "Testing the correlated random coefficient model," Journal of Econometrics, Elsevier, vol. 158(2), pages 177-203, October.
    15. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    16. Mario Fiorini & Katrien Stevens, 2021. "Scrutinizing the Monotonicity Assumption in IV and fuzzy RD designs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1475-1526, December.
    17. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    18. Heckman, James J. & Schmierer, Daniel, 2010. "Tests of hypotheses arising in the correlated random coefficient model," Economic Modelling, Elsevier, vol. 27(6), pages 1355-1367, November.
    19. Gerten, Elisa & Beckmann, Michael & Kräkel, Matthias, 2022. "Information and Communication Technology, Hierarchy, and Job Design," IZA Discussion Papers 15491, Institute of Labor Economics (IZA).
    20. James Berry & Greg Fischer & Raymond Guiteras, 2020. "Eliciting and Utilizing Willingness to Pay: Evidence from Field Trials in Northern Ghana," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1436-1473.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • I3 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty
    • J2 - Labor and Demographic Economics - - Demand and Supply of Labor

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:26028. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.