Identification and estimation of triangular models with a binary treatment
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
References listed on IDEAS
- Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
- Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
- Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017.
"The triangular model with random coefficients,"
Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.
- Stefan Hoderlein & Hajo Holzmann & Alexander Meister, 2015. "The triangular model with random coefficients," CeMMAP working papers 33/15, Institute for Fiscal Studies.
- Stefan Hoderlein & Hajo Holzmann & Alexander Meister, 2015. "The Triangular Model with Random Coefficients," Boston College Working Papers in Economics 894, Boston College Department of Economics, revised 01 Feb 2016.
- Stefan Hoderlein & Hajo Holzmann & Alexander Meister, 2015. "The triangular model with random coefficients," CeMMAP working papers CWP33/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2017. "Using Instrumental Variables for Inference about Policy Relevant Treatment Effects," NBER Working Papers 23568, National Bureau of Economic Research, Inc.
- Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2017. "A Compendium of Copulas," Statistica, Department of Statistics, University of Bologna, vol. 77(4), pages 279-328.
- Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012.
"Quantile treatment effects in the regression discontinuity design,"
Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
- Frölich, Markus & Melly, Blaise, 2008. "Quantile Treatment Effects in the Regression Discontinuity Design," IZA Discussion Papers 3638, Institute of Labor Economics (IZA).
- Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2018_1702, CEMFI.
- Hidehiko Ichimura & Whitney K. Newey, 2022.
"The influence function of semiparametric estimators,"
Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers CWP44/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The Influence Function of Semiparametric Estimators," CIRJE F-Series CIRJE-F-985, CIRJE, Faculty of Economics, University of Tokyo.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers 06/17, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers 44/15, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers CWP06/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Michael Lechner, 2002. "Program Heterogeneity And Propensity Score Matching: An Application To The Evaluation Of Active Labor Market Policies," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 205-220, May.
- James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 71, Elsevier.
- Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013.
"Inference on Counterfactual Distributions,"
Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2008. "Inference On Counterfactual Distributions," Boston University - Department of Economics - Working Papers Series wp2008-005, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on Counterfactual Distributions," Papers 0904.0951, arXiv.org, revised Sep 2013.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers 05/12, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers 17/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers CWP17/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers CWP09/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers 09/09, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers CWP05/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ma, Shuangge & Kosorok, Michael R., 2005. "Robust semiparametric M-estimation and the weighted bootstrap," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 190-217, September.
- James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
- Sokbae Lee & Bernard Salanié, 2018.
"Identifying Effects of Multivalued Treatments,"
Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
- Salanié, Bernard, 2015. "Identifying Effects of Multivalued Treatments," CEPR Discussion Papers 10970, C.E.P.R. Discussion Papers.
- Sokbae (Simon) Lee & Bernard Salanie, 2015. "Identifying effects of multivalued treatments," CeMMAP working papers 72/15, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Bernard Salanie, 2018. "Identifying effects of multivalued treatments," CeMMAP working papers CWP34/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae Lee & Bernard Salani'e, 2018. "Identifying Effects of Multivalued Treatments," Papers 1805.00057, arXiv.org.
- Sokbae (Simon) Lee & Bernard Salanie, 2015. "Identifying effects of multivalued treatments," CeMMAP working papers CWP72/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kaplan, David M. & Sun, Yixiao, 2017.
"Smoothed Estimating Equations For Instrumental Variables Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
- Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
- David M. Kaplan & Yixiao Sun, 2016. "Smoothed estimating equations for instrumental variables quantile regression," Papers 1609.09033, arXiv.org.
- David M. Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
- Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010.
"Quantile and Probability Curves Without Crossing,"
Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and Probability Curves Without Crossing," Papers 0704.3649, arXiv.org, revised Jul 2014.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," Post-Print hal-01052958, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile And Probability Curves Without Crossing," Boston University - Department of Economics - Working Papers Series WP2007-011, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," SciencePo Working papers Main hal-01052958, HAL.
- David H. Autor & Susan N. Houseman, 2010.
"Do Temporary-Help Jobs Improve Labor Market Outcomes for Low-Skilled Workers? Evidence from "Work First","
American Economic Journal: Applied Economics, American Economic Association, vol. 2(3), pages 96-128, July.
- David H. Autor & Susan N. Houseman, "undated". "Do Temporary-Help Jobs Improve Labor Market Outcomes for Low-Skilled Workers? Evidence from "Work First"," Upjohn Working Papers dhasnh2010, W.E. Upjohn Institute for Employment Research.
- David Autor & Susan Houseman, 2009. "Do Temporary-Help Jobs Improve Labor Market Outcomes for Low-Skilled Workers? Evidence from 'Work First'," Upjohn Working Papers 05-124, W.E. Upjohn Institute for Employment Research.
- David H. Autor & Susan Houseman, 2005. "Do Temporary Help Jobs Improve Labor Market Outcomes for Low-Skilled Workers? Evidence from 'Work First'," NBER Working Papers 11743, National Bureau of Economic Research, Inc.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Guido W. Imbens & Whitney K. Newey, 2009.
"Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity,"
Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
- Guido W. Imbens & Whitney K. Newey, 2002. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," NBER Technical Working Papers 0285, National Bureau of Economic Research, Inc.
- Whitney Newey & Guido Imbens, 2004. "Identification and Estimation of Triangular Simultaneous Equations Models without Additivity," Econometric Society 2004 North American Summer Meetings 594, Econometric Society.
- Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018.
"Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance,"
Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2356-2409.
- Cornelißen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2018. "Who benefits from universal child care? Estimating marginal returns to early child care attendance," Ruhr Economic Papers 757, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Dustmann, Christian & Cornelissen, Thomas & Raute, Anna & Schonberg, Uta, 2018. "Who benefits from universal child care? Estimating marginal returns to early child care attendance," CEPR Discussion Papers 13050, C.E.P.R. Discussion Papers.
- Thomas Cornelissen & Christian Dustmann & Anna Christina Raute & Uta Schönberg, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendanc," CESifo Working Paper Series 7162, CESifo.
- Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance," IZA Discussion Papers 11688, Institute of Labor Economics (IZA).
- Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018. "Who benefits from universal child care? Estimating marginal returns to early child care attendance," RF Berlin - CReAM Discussion Paper Series 1808, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
- Brigham R. Frandsen & Lars J. Lefgren, 2018. "Testing Rank Similarity," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 86-91, March.
- repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
- Alberto Abadie & Joshua Angrist & Guido Imbens, 2002.
"Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings,"
Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
- Alberto Abadie & Joshua Angrist & Guido Imbens, 1999. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Working papers 99-16, Massachusetts Institute of Technology (MIT), Department of Economics.
- Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
- Amanda Kowalski, 2016.
"Doing more when you're running LATE: Applying marginal treatment effect methods to examine treatment effect heterogeneity in experiments,"
Artefactual Field Experiments
00560, The Field Experiments Website.
- Amanda E. Kowalski, 2016. "Doing More When You're Running LATE: Applying Marginal Treatment Effect Methods to Examine Treatment Effect Heterogeneity in Experiments," NBER Working Papers 22363, National Bureau of Economic Research, Inc.
- Philipp Eisenhauer & James J. Heckman & Edward Vytlacil, 2015.
"The Generalized Roy Model and the Cost-Benefit Analysis of Social Programs,"
Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 413-443.
- Eisenhauer, Philipp & Heckman, James J. & Vytlacil, Edward, 2014. "The generalized Roy model and the cost-benefit analysis of social programs," ZEW Discussion Papers 14-082, ZEW - Leibniz Centre for European Economic Research.
- James J. Heckman & Edward Vytlacil, 2005.
"Structural Equations, Treatment Effects, and Econometric Policy Evaluation,"
Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
- James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects and Econometric Policy Evaluation," NBER Working Papers 11259, National Bureau of Economic Research, Inc.
- James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects and Econometric Policy Evaluation," NBER Technical Working Papers 0306, National Bureau of Economic Research, Inc.
- Santiago Pereda-Fernández, 2021.
"Copula-Based Random Effects Models for Clustered Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
- Santiago Pereda Fernández, 2016. "Copula-based random effects models for clustered data," Temi di discussione (Economic working papers) 1092, Bank of Italy, Economic Research and International Relations Area.
- Sung Jae Jun & Joris Pinkse & Haiqing Xu, 2016. "Estimating a nonparametric triangular model with binary endogenous regressors," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 113-149, June.
- Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017.
"Beyond LATE with a Discrete Instrument,"
Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
- Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2012. "Beyond LATE with a discrete instrument. Heterogeneity in the quantity-quality interaction of children," Discussion Papers 703, Statistics Norway, Research Department.
- Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011.
"Estimating Marginal Returns to Education,"
American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
- Pedro Carneiro & James Heckman & Edward Vytlacil, 2010. "Estimating marginal returns to education," CeMMAP working papers CWP29/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Carneiro, Pedro & Heckman, James J. & Vytlacil, Edward, 2010. "Estimating Marginal Returns to Education," IZA Discussion Papers 5275, Institute of Labor Economics (IZA).
- Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2010. "Estimating Marginal Returns to Education," NBER Working Papers 16474, National Bureau of Economic Research, Inc.
- Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019.
"Specification tests for the propensity score,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
- Pedro H. C. Sant'Anna & Xiaojun Song, 2016. "Specification Tests for the Propensity Score," Papers 1611.06217, arXiv.org, revised Feb 2019.
- Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
- Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012.
"The random coefficients logit model is identified,"
Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
- Patrick Bajari & Jeremy Fox & Kyoo il Kim & Stephen P. Ryan, 2009. "The Random Coefficients Logit Model Is Identified," NBER Working Papers 14934, National Bureau of Economic Research, Inc.
- Matthew A Masten, 2018.
"Random Coefficients on Endogenous Variables in Simultaneous Equations Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 1193-1250.
- Matthew Masten, 2014. "Random coefficients on endogenous variables in simultaneous equations models," CeMMAP working papers CWP01/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Matthew Masten, 2015. "Random coefficients on endogenous variables in simultaneous equations models," CeMMAP working papers 25/15, Institute for Fiscal Studies.
- Matthew Masten, 2014. "Random coefficients on endogenous variables in simultaneous equations models," CeMMAP working papers 01/14, Institute for Fiscal Studies.
- Matthew Masten, 2015. "Random coefficients on endogenous variables in simultaneous equations models," CeMMAP working papers CWP25/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Markus Frölich & Blaise Melly, 2013.
"Unconditional Quantile Treatment Effects Under Endogeneity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 346-357, July.
- Markus Frölich & Blaise Melly, 2007. "Unconditional quantile treatment effects under endogeneity," CeMMAP working papers CWP32/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Frölich, Markus & Melly, Blaise, 2008. "Unconditional Quantile Treatment Effects under Endogeneity," IZA Discussion Papers 3288, Institute of Labor Economics (IZA).
- James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lee, Sokbae, 2007.
"Endogeneity in quantile regression models: A control function approach,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers CWP08/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers 08/04, Institute for Fiscal Studies.
- Sokbae Lee, 2004. "Endogeneity in Quantile Regression Models: A Control Function Approach," Econometric Society 2004 North American Summer Meetings 521, Econometric Society.
- Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
- David H. Autor & Susan N. Houseman & Sari Pekkala Kerr, 2017.
"The Effect of Work First Job Placements on the Distribution of Earnings: An Instrumental Variable Quantile Regression Approach,"
Journal of Labor Economics, University of Chicago Press, vol. 35(1), pages 149-190.
- David Autor & Susan N. Houseman & Sari Pekkala Kerr, "undated". "The Effect of Work First Job Placements on the Distribution of Earnings: An Instrumental Variable Quantile Regression Approach," Upjohn Working Papers ahk17, W.E. Upjohn Institute for Employment Research.
- David H. Autor & Susan N. Houseman & Sari Pekkala Kerr, 2012. "The Effect of Work First Job Placements on the Distribution of Earnings: An Instrumental Variable Quantile Regression Approach," NBER Working Papers 17972, National Bureau of Economic Research, Inc.
- Prokhorov, Artem & Schmidt, Peter, 2009.
"Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas,"
Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
- Artem Prokhorov & Peter Schmidt, 2009. "Likelihood Based Estimation in a Panel Setting: Robustness, Redundancy and Validity of Copulas," Working Papers 09002, Concordia University, Department of Economics.
- Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
- Wüthrich, Kaspar, 2019.
"A closed-form estimator for quantile treatment effects with endogeneity,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
- Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," University of California at San Diego, Economics Working Paper Series qt99n9197q, Department of Economics, UC San Diego.
- Joel L. Horowitz, 2007. "Asymptotic Normality Of A Nonparametric Instrumental Variables Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1329-1349, November.
- Jinyong Hahn & Geert Ridder, 2011. "Conditional Moment Restrictions and Triangular Simultaneous Equations," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 683-689, May.
- Amanda E. Kowalski, 2016. "Doing More When You're Running LATE: Applying Marginal Treatment Effect Methods to Examine Treatment Effect Heterogeneity in Experiments for the Young and Privately Insured"," Cowles Foundation Discussion Papers 2045, Cowles Foundation for Research in Economics, Yale University.
- Carneiro, Pedro & Lee, Sokbae, 2009.
"Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality,"
Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
- Pedro Carneiro & Sokbae (Simon) Lee, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," CeMMAP working papers CWP01/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
- Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006.
"Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure,"
Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
- Joshua Angrist & Victor Chernozhukov & Ivan Fernandez-Val, 2004. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," NBER Working Papers 10428, National Bureau of Economic Research, Inc.
- Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
- Das, M., 2005. "Instrumental variables estimators of nonparametric models with discrete endogenous regressors," Journal of Econometrics, Elsevier, vol. 124(2), pages 335-361, February.
- Klein, Roger W & Spady, Richard H, 1993.
"An Efficient Semiparametric Estimator for Binary Response Models,"
Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
- Klein, R.W. & Spady, R.H., 1991. "An Efficient Semiparametric Estimator for Binary Response Models," Papers 70, Bell Communications - Economic Research Group.
- Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
- Edward Vytlacil & Nese Yildiz, 2007. "Dummy Endogenous Variables in Weakly Separable Models," Econometrica, Econometric Society, vol. 75(3), pages 757-779, May.
- repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
- James J. Heckman & Rodrigo Pinto, 2018.
"Unordered Monotonicity,"
Econometrica, Econometric Society, vol. 86(1), pages 1-35, January.
- James J. Heckman & Rodrigo Pinto, 2017. "Unordered Monotonicity," NBER Working Papers 23497, National Bureau of Economic Research, Inc.
- Heckman, James J. & Pinto, Rodrigo, 2017. "Unordered Monotonicity," IZA Discussion Papers 10821, Institute of Labor Economics (IZA).
- Andrew Chesher, 2005.
"Nonparametric Identification under Discrete Variation,"
Econometrica, Econometric Society, vol. 73(5), pages 1525-1550, September.
- Andrew Chesher, 2003. "Nonparametric identification under discrete variation," CeMMAP working papers 19/03, Institute for Fiscal Studies.
- Andrew Chesher, 2003. "Nonparametric identification under discrete variation," CeMMAP working papers CWP19/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W & Angrist, Joshua D, 1994.
"Identification and Estimation of Local Average Treatment Effects,"
Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
- Joshua D. Angrist & Guido W. Imbens, 1995. "Identification and Estimation of Local Average Treatment Effects," NBER Technical Working Papers 0118, National Bureau of Economic Research, Inc.
- Kasy, Maximilian, 2011. "Identification In Triangular Systems Using Control Functions," Econometric Theory, Cambridge University Press, vol. 27(3), pages 663-671, June.
- Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
- Jun, Sung Jae & Pinkse, Joris & Xu, Haiqing, 2011. "Tighter bounds in triangular systems," Journal of Econometrics, Elsevier, vol. 161(2), pages 122-128, April.
- José A. F. Machado & José Mata, 2005.
"Counterfactual decomposition of changes in wage distributions using quantile regression,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465, May.
- José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
- James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 70, Elsevier.
- Chen, Xiaohong & Huang, Zhuo & Yi, Yanping, 2021. "Efficient estimation of multivariate semi-nonparametric GARCH filtered copula models," Journal of Econometrics, Elsevier, vol. 222(1), pages 484-501.
- Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
- A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
- Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
- Firpo, Sergio & Ridder, Geert, 2019. "Partial identification of the treatment effect distribution and its functionals," Journal of Econometrics, Elsevier, vol. 213(1), pages 210-234.
- Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
- James Bisbee & Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2017.
"Local Instruments, Global Extrapolation: External Validity of the Labor Supply-Fertility Local Average Treatment Effect,"
Journal of Labor Economics, University of Chicago Press, vol. 35(S1), pages 99-147.
- James Bisbee & Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2015. "Local Instruments, Global Extrapolation: External Validity of the Labor Supply-Fertility Local Average Treatment Effect," NBER Working Papers 21663, National Bureau of Economic Research, Inc.
- Lee, Lung-fei, 2007. "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 333-374, October.
- Han, Sukjin & Vytlacil, Edward J., 2017. "Identification in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Econometrics, Elsevier, vol. 199(1), pages 63-73.
- Fan, Yanqin & Park, Sang Soo, 2010. "Sharp Bounds On The Distribution Of Treatment Effects And Their Statistical Inference," Econometric Theory, Cambridge University Press, vol. 26(3), pages 931-951, June.
- Joel L. Horowitz & Sokbae Lee, 2007.
"Nonparametric Instrumental Variables Estimation of a Quantile Regression Model,"
Econometrica, Econometric Society, vol. 75(4), pages 1191-1208, July.
- Joel L. Horowitz & Sokbae (Simon) Lee, 2006. "Nonparametric instrumental variables estimation of a quantile regression model," CeMMAP working papers CWP09/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Santiago Pereda Fernández, 2016. "Estimation of counterfactual distributions with a continuous endogenous treatment," Temi di discussione (Economic working papers) 1053, Bank of Italy, Economic Research and International Relations Area.
- Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
- Quang Vuong & Haiqing Xu, 2017. "Counterfactual mapping and individual treatment effects in nonseparable models with binary endogeneity," Quantitative Economics, Econometric Society, vol. 8(2), pages 589-610, July.
- Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
- Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007.
"Quantile and probability curves without crossing,"
CeMMAP working papers
CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," SciencePo Working papers hal-01052958, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," Sciences Po publications info:hdl:2441/5rkqqmvrn4t, Sciences Po.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and Probability Curves Without Crossing," Papers 0704.3649, arXiv.org, revised Jul 2014.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," Post-Print hal-01052958, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile And Probability Curves Without Crossing," Boston University - Department of Economics - Working Papers Series WP2007-011, Boston University - Department of Economics.
- Alexander Torgovitsky, 2015. "Identification of Nonseparable Models Using Instruments With Small Support," Econometrica, Econometric Society, vol. 83(3), pages 1185-1197, May.
- Toru Kitagawa, 2009. "Identification region of the potential outcome distributions under instrument independence," CeMMAP working papers CWP30/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2017_1702, CEMFI.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wüthrich, Kaspar, 2019.
"A closed-form estimator for quantile treatment effects with endogeneity,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
- Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," University of California at San Diego, Economics Working Paper Series qt99n9197q, Department of Economics, UC San Diego.
- Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Marx, Philip, 2024. "Sharp bounds in the latent index selection model," Journal of Econometrics, Elsevier, vol. 238(2).
- Manuel Arellano & Stéphane Bonhomme, 2017.
"Quantile Selection Models With an Application to Understanding Changes in Wage Inequality,"
Econometrica, Econometric Society, vol. 85, pages 1-28, January.
- Manuel Arellano & Stéphane Bonhomme, 2015. "Quantile selection models: with an application to understanding changes in wage inequality," CeMMAP working papers 75/15, Institute for Fiscal Studies.
- Manuel Arellano & Stéphane Bonhomme, 2016. "Quantile Selection Models with an Application to Understanding Changes in Wage Inequality," Working Papers wp2016_1610, CEMFI.
- Manuel Arellano & Stéphane Bonhomme, 2015. "Quantile selection models: with an application to understanding changes in wage inequality," CeMMAP working papers CWP75/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
- Kaspar Wüthrich, 2020.
"A Comparison of Two Quantile Models With Endogeneity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
- Kaspar W thrich, 2014. "A Comparison of two Quantile Models with Endogeneity," Diskussionsschriften dp1408, Universitaet Bern, Departement Volkswirtschaft.
- Wüthrich, Kaspar, 2020. "A Comparison of Two Quantile Models With Endogeneity," University of California at San Diego, Economics Working Paper Series qt0q43931f, Department of Economics, UC San Diego.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Hiroaki Kaido & Kaspar Wüthrich, 2021.
"Decentralization estimators for instrumental variable quantile regression models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
- Hiroaki Kaido & Kaspar Wuthrich, 2018. "Decentralization Estimators for Instrumental Variable Quantile Regression Models," Papers 1812.10925, arXiv.org, revised Sep 2020.
- Hiroaki Kaido & Kaspar Wüthrich, 2018. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP72/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kaido, Hiroaki & Wüthrich, Kaspar, 2021. "Decentralization estimators for instrumental variable quantile regression models," University of California at San Diego, Economics Working Paper Series qt362921wv, Department of Economics, UC San Diego.
- Hiroaki Kaido & Kaspar Wüthrich, 2019. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP42/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024.
"Policy evaluation with multiple instrumental variables,"
Journal of Econometrics, Elsevier, vol. 243(1).
- Magne Mogstad & Alexander Torgovitsky & Christopher R. Walters, 2020. "Policy Evaluation with Multiple Instrumental Variables," Working Papers 2020-99, Becker Friedman Institute for Research In Economics.
- Magne Mogstad & Alexander Torgovitsky & Christopher R. Walters, 2020. "Policy Evaluation with Multiple Instrumental Variables," NBER Working Papers 27546, National Bureau of Economic Research, Inc.
- Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
- Domenico Depalo, 2020.
"Explaining the causal effect of adherence to medication on cholesterol through the marginal patient,"
Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
- Depalo, D.;, 2019. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health, Econometrics and Data Group (HEDG) Working Papers 19/13, HEDG, c/o Department of Economics, University of York.
- Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013.
"Inference on Counterfactual Distributions,"
Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2008. "Inference On Counterfactual Distributions," Boston University - Department of Economics - Working Papers Series wp2008-005, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers 05/12, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers 17/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers CWP17/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers CWP09/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on Counterfactual Distributions," Papers 0904.0951, arXiv.org, revised Sep 2013.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers 09/09, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers CWP05/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ma, Jun & Marmer, Vadim & Yu, Zhengfei, 2023.
"Inference on individual treatment effects in nonseparable triangular models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2096-2124.
- Jun Ma & Vadim Marmer & Zhengfei Yu, 2021. "Inference on Individual Treatment Effects in Nonseparable Triangular Models," Papers 2107.05559, arXiv.org, revised Feb 2023.
- Yingying DONG & Ying-Ying LEE & Michael GOU, 2019. "Regression Discontinuity Designs with a Continuous Treatment," Discussion papers 19058, Research Institute of Economy, Trade and Industry (RIETI).
- David Powell, 2020. "Quantile Treatment Effects in the Presence of Covariates," The Review of Economics and Statistics, MIT Press, vol. 102(5), pages 994-1005, December.
- Sokbae Lee & Bernard Salanié, 2018.
"Identifying Effects of Multivalued Treatments,"
Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
- Sokbae (Simon) Lee & Bernard Salanie, 2015. "Identifying effects of multivalued treatments," CeMMAP working papers 72/15, Institute for Fiscal Studies.
- Salanié, Bernard, 2015. "Identifying Effects of Multivalued Treatments," CEPR Discussion Papers 10970, C.E.P.R. Discussion Papers.
- Sokbae (Simon) Lee & Bernard Salanie, 2015. "Identifying effects of multivalued treatments," CeMMAP working papers CWP72/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Bernard Salanie, 2018. "Identifying effects of multivalued treatments," CeMMAP working papers CWP34/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae Lee & Bernard Salani'e, 2018. "Identifying Effects of Multivalued Treatments," Papers 1805.00057, arXiv.org.
- Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
- Feng, Junlong, 2024. "Matching points: Supplementing instruments with covariates in triangular models," Journal of Econometrics, Elsevier, vol. 238(1).
- Blaise Melly und Kaspar W thrich, 2016. "Local quantile treatment effects," Diskussionsschriften dp1605, Universitaet Bern, Departement Volkswirtschaft.
- Kasy, Maximilian, "undated". "Instrumental variables with unrestricted heterogeneity and continuous treatment - DON'T CITE! SEE ERRATUM BELOW," Working Paper 33257, Harvard University OpenScholar.
More about this item
Keywords
copula; endogeneity; policy analysis; quantile regression; unconditional distributional effects;All these keywords.
JEL classification:
- C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
- C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2019-04-01 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_1210_19. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.