IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v153y2009i1p93-104.html
   My bibliography  Save this article

Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas

Author

Listed:
  • Prokhorov, Artem
  • Schmidt, Peter

Abstract

This paper considers the estimation of likelihood-based models in a panel setting. That is, we have panel data, and for each time period separately we have a correctly specified model that could be estimated by MLE. We want to allow non-independence over time. This paper shows how to improve on the QMLE. It then considers MLE based on joint distributions constructed using copulas. It discusses the efficiency gain from using the true copula, and shows that knowledge of the true copula is redundant only if the variance matrix of the relevant set of moment conditions is singular. It also discusses the question of robustness against misspecification of the copula, and proposes a test of the validity of the copula. GMM methods are argued to be useful analytically, and also for reasons of efficiency if the copula is robust but not correct.

Suggested Citation

  • Prokhorov, Artem & Schmidt, Peter, 2009. "Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas," Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
  • Handle: RePEc:eee:econom:v:153:y:2009:i:1:p:93-104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00143-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Breusch, Trevor & Qian, Hailong & Schmidt, Peter & Wyhowski, Donald, 1999. "Redundancy of moment conditions," Journal of Econometrics, Elsevier, vol. 91(1), pages 89-111, July.
    3. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    4. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    5. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    6. Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, June.
    7. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    8. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    9. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    10. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    11. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    12. A. Colin Cameron & Tong Li & Pravin K. Trivedi & David M. Zimmer, 2004. "Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 566-584, December.
    13. Zimmer, David M. & Trivedi, Pravin K., 2006. "Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 63-76, January.
    14. Wooldridge, Jeffrey M., 1991. "Specification testing and quasi-maximum- likelihood estimation," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 29-55.
    15. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichen Gao & Yu Zhang & Ximing Wu, 2015. "Penalized exponential series estimation of copula densities with an application to intergenerational dependence of body mass index," Empirical Economics, Springer, vol. 48(1), pages 61-81, February.
    2. Christine Amsler & Artem Prokhorov & Peter Schmidt, 2014. "Using Copulas to Model Time Dependence in Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 497-522, August.
    3. Santiago Pereda Fernández, 2016. "Copula-based random effects models for clustered data," Temi di discussione (Economic working papers) 1092, Bank of Italy, Economic Research and International Relations Area.
    4. Rainer Winkelmann, 2012. "Copula Bivariate Probit Models: With An Application To Medical Expenditures," Health Economics, John Wiley & Sons, Ltd., vol. 21(12), pages 1444-1455, December.
    5. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    6. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    7. Rainer Winkelmann, 2009. "Copula-based bivariate binary response models," SOI - Working Papers 0913, Socioeconomic Institute - University of Zurich.
    8. Anatolyev, Stanislav & Khabibullin, Renat & Prokhorov, Artem, 2014. "An algorithm for constructing high dimensional distributions from distributions of lower dimension," Economics Letters, Elsevier, vol. 123(3), pages 257-261.
    9. Azam Dehgani & Ali Dolati & Manuel Úbeda-Flores, 2013. "Measures of radial asymmetry for bivariate random vectors," Statistical Papers, Springer, vol. 54(2), pages 271-286, May.
    10. Hasebe, Takuya & Vijverberg, Wim P., 2012. "A Flexible Sample Selection Model: A GTL-Copula Approach," IZA Discussion Papers 7003, Institute for the Study of Labor (IZA).
    11. Shulin Zhang, & Ostap Okhrin, & Qian M. Zhou & Peter X.-K. Song, 2013. "Goodness-of-fit Test for Specification of Semiparametric Copula Dependence Models," SFB 649 Discussion Papers SFB649DP2013-041, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Keywords

    Copula MLE QMLE GMM Panel data;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:153:y:2009:i:1:p:93-104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.