IDEAS home Printed from https://ideas.repec.org/p/crd/wpaper/11002.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Using Copulas to Model Time Dependence in Stochastic Frontier Models

Author

Listed:
  • Christine Amsler

    (Michigan State University)

  • Artem Prokhorov

    (Concordia University and CIREQ)

  • Peter Schmidt

    (Michigan State University and Yonsei University)

Abstract

We consider stochastic frontier models in a panel data setting where there is dependence over time. Current methods of modelling time dependence in this setting are either unduly restrictive or computationally infeasible. Some impose restrictive assumptions on the nature of dependence such as the "scaling" property. Others involve T-dimensional integration, where T is the number of cross-sections, which may be large. Moreover, no known multivariate distribution has the property of having commonly used, convenient marginals such as normal/half-normal. We show how to use copulas to resolve these issues. The range of dependence we allow for is unrestricted and the computational task involved is easy compared to the alternatives. Also, the resulting estimators are more efficient than those that assume independence over time. We propose two alternative specifications. One applies a copula function to the distribution of the composed error term. This permits the use of MLE and GMM. The other applies a copula to the distribution of the one-sided error term. This allows for a simulated MLE and improved estimation of inefficiencies. An application demonstrates the usefulness of our approach.

Suggested Citation

  • Christine Amsler & Artem Prokhorov & Peter Schmidt, 2011. "Using Copulas to Model Time Dependence in Stochastic Frontier Models," Working Papers 11002, Concordia University, Department of Economics.
  • Handle: RePEc:crd:wpaper:11002
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Wei Wang & Christine Amsler & Peter Schmidt, 2011. "Goodness of fit tests in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 95-118, April.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
    5. Christian Gouriéroux & Alain Monfort, 1991. "Simulation Based Inference in Models with Heterogeneity," Annals of Economics and Statistics, GENES, issue 20-21, pages 69-107.
    6. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    7. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    8. Prokhorov, Artem & Schmidt, Peter, 2009. "Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas," Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
    9. Antonio Alvarez & Christine Amsler & Luis Orea & Peter Schmidt, 2006. "Interpreting and Testing the Scaling Property in Models where Inefficiency Depends on Firm Characteristics," Journal of Productivity Analysis, Springer, vol. 25(3), pages 201-212, June.
    10. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    11. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    12. William C. Horrace & Peter Schmidt, 2002. "Confidence Statements for Efficiency Estimates from Stochastic Frontier Models," Econometrics 0206006, University Library of Munich, Germany.
    13. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    14. Wang, Hung-Jen, 2006. "Stochastic frontier models," MPRA Paper 31079, University Library of Munich, Germany.
    15. repec:adr:anecst:y:1991:i:20-21:p:04 is not listed on IDEAS
    16. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    17. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    18. Wen-Jen Tsay & Cliff J. Huang & Tsu-Tan Fu & I-Lin Ho, 2009. "Maximum Likelihood Estimation of Censored Stochastic Frontier Models: An Application to the Three-Stage DEA Method," IEAS Working Paper : academic research 09-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    19. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    20. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    21. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    22. Horrace, William C., 2005. "Some results on the multivariate truncated normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 209-221, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    2. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    3. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    4. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    5. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    6. Young Hoon Lee, 2009. "Frontier Models and their Application to the Sports Industry," Working Papers 0903, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised 2009.
    7. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    8. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    9. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    10. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    11. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    12. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    13. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    14. Hailu, Kidanemariam Berhe & Tanaka, Makoto, 2015. "A “true” random effects stochastic frontier analysis for technical efficiency and heterogeneity: Evidence from manufacturing firms in Ethiopia," Economic Modelling, Elsevier, vol. 50(C), pages 179-192.
    15. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    16. Badunenko, Oleg & D’Inverno, Giovanna & De Witte, Kristof, 2023. "On distinguishing the direct causal effect of an intervention from its efficiency-enhancing effects," European Journal of Operational Research, Elsevier, vol. 310(1), pages 432-447.
    17. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    18. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    19. Quang Nguyen & Sean Pascoe & Louisa Coglan & Son Nghiem, 2021. "The sensitivity of efficiency scores to input and other choices in stochastic frontier analysis: an empirical investigation," Journal of Productivity Analysis, Springer, vol. 55(1), pages 31-40, February.
    20. Abiodun Adegboye & Olawale Daniel Akinyele, 2022. "Assessing the determinants of government spending efficiency in Africa," Future Business Journal, Springer, vol. 8(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crd:wpaper:11002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Economics Department (email available below). General contact details of provider: https://edirc.repec.org/data/deconca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.