IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v44y2009i2p199-213.html
   My bibliography  Save this article

Goodness-of-fit tests for copulas: A review and a power study

Author

Listed:
  • Genest, Christian
  • Rémillard, Bruno
  • Beaudoin, David

Abstract

Many proposals have been made recently for goodness-of-fit testing of copula models. After reviewing them briefly, the authors concentrate on "blanket tests", i.e., those whose implementation requires neither an arbitrary categorization of the data nor any strategic choice of smoothing parameter, weight function, kernel, window, etc. The authors present a critical review of these procedures and suggest new ones. They describe and interpret the results of a large Monte Carlo experiment designed to assess the effect of the sample size and the strength of dependence on the level and power of the blanket tests for various combinations of copula models under the null hypothesis and the alternative. To circumvent problems in the determination of the limiting distribution of the test statistics under composite null hypotheses, they recommend the use of a double parametric bootstrap procedure, whose implementation is detailed. They conclude with a number of practical recommendations.

Suggested Citation

  • Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
  • Handle: RePEc:eee:insuma:v:44:y:2009:i:2:p:199-213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00120-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    2. Thierry Ane & Cecile Kharoubi, 2003. "Dependence Structure and Risk Measure," The Journal of Business, University of Chicago Press, vol. 76(3), pages 411-438, July.
    3. Frahm, Gabriel & Junker, Markus & Szimayer, Alexander, 2003. "Elliptical copulas: applicability and limitations," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 275-286, July.
    4. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    5. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    6. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    7. Panchenko, Valentyn, 2005. "Goodness-of-fit test for copulas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 176-182.
    8. Tomasz Burzykowski & Geert Molenberghs & Marc Buyse, 2004. "The validation of surrogate end points by using data from randomized clinical trials: a case‐study in advanced colorectal cancer," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(1), pages 103-124, February.
    9. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    10. Klugman, Stuart A. & Parsa, Rahul, 1999. "Fitting bivariate loss distributions with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 139-148, March.
    11. Fermanian, Jean-David, 2005. "Goodness-of-fit tests for copulas," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 119-152, July.
    12. Scaillet, Olivier, 2007. "Kernel-based goodness-of-fit tests for copulas with fixed smoothing parameters," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 533-543, March.
    13. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    14. Markus Junker & Angelika May, 2005. "Measurement of aggregate risk with copulas," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 428-454, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    2. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    3. Dobric, Jadran & Schmid, Friedrich, 2007. "A goodness of fit test for copulas based on Rosenblatt's transformation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4633-4642, May.
    4. Gregor Weiß, 2011. "Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study," Computational Statistics, Springer, vol. 26(1), pages 31-54, March.
    5. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    6. Ostap Okhrin, 2010. "Fitting high-dimensional Copulae to Data," SFB 649 Discussion Papers SFB649DP2010-022, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions. III," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 24(4), pages 100-130.
    8. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    9. Katja Ignatieva & Eckhard Platen & Renata Rendek, 2010. "Using Dynamic Copulae for Modeling Dependency in Currency Denominations of a Diversifed World Stock Index," Research Paper Series 284, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Shulin Zhang, & Ostap Okhrin, & Qian M. Zhou & Peter X.-K. Song, 2013. "Goodness-of-fit Test for Specification of Semiparametric Copula Dependence Models," SFB 649 Discussion Papers SFB649DP2013-041, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    12. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    13. Lu, Xiaohui & Zheng, Xu, 2020. "A goodness-of-fit test for copulas based on martingale transformation," Journal of Econometrics, Elsevier, vol. 215(1), pages 84-117.
    14. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    15. Brodsky, Boris & Penikas, Henry & Safaryan, Irina, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    16. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    17. Kojadinovic, Ivan & Yan, Jun, 2010. "Comparison of three semiparametric methods for estimating dependence parameters in copula models," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 52-63, August.
    18. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    19. Rémillard, Bruno & Scaillet, Olivier, 2009. "Testing for equality between two copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 377-386, March.
    20. Bouezmarni, T. & Rombouts, J.V.K., 2009. "Semiparametric multivariate density estimation for positive data using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:44:y:2009:i:2:p:199-213. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.