IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Efficient Estimation of Semiparametric Multivariate Copula Models

  • Xiaohong Chen

    ()

    (Department of Economics, New York University)

  • Yanqin Fan

    ()

    (Department of Economics, Vanderbilt University)

  • Victor Tsyrennifov

    ()

    (Department of Economics, New York University)

We propose a sieve maximum likelihood (ML) estimation procedure for a broad class of semiparametric multivariate distribution models. A joint distribution in this class is characterized by a parametric copula function evaluated at nonparametric marginal distributions. This class of models has gained popularity in diverse fields due to a) its flexibility in separately modeling the dependence structure and the marginal behaviors of a multivariate random variable, and b) its circumvention of the "curse of dimensionality" associated with purely nonparametric multivariate distributions. We show that the plug-in sieve ML estimates of all smooth functionals, including the finite dimensional copula parameters and the unknown marginal distributions, are semiparametrically efficient; and that their asymptotic variances can be estimated consistently. Moreover, prior restrictions on the marginal distributions can be easily incorporated into the sieve ML procedure to achieve further efficiency gains. Two such cases are studied in the paper: (i) the marginal distributions are equal but otherwise unspecifed, and (ii) some but not all marginal distributions are parametric. Monte Carlo studies indicate that the sieve ML estimates perform well in finite samples, especially so when prior information on the marginal distributions is incorporated.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.accessecon.com/pubs/VUECON/vu04-w20.pdf
File Function: Revised 2004-09
Download Restriction: no

Paper provided by Vanderbilt University Department of Economics in its series Vanderbilt University Department of Economics Working Papers with number 0420.

as
in new window

Length:
Date of creation: Sep 2004
Date of revision:
Handle: RePEc:van:wpaper:0420
Contact details of provider: Web page: http://www.vanderbilt.edu/econ/wparchive/index.html

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lee, Lung-Fei, 1982. "Some Approaches to the Correction of Selectivity Bias," Review of Economic Studies, Wiley Blackwell, vol. 49(3), pages 355-72, July.
  2. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
  3. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-12, March.
  4. Granger, Clive W.J. & Teräsvirta, Timo & Patton, Andrew J, 2002. "Common Factors in Conditional Distributions," University of California at San Diego, Economics Working Paper Series qt3bd1n1x5, Department of Economics, UC San Diego.
  5. Coppejans, Mark & Gallant, A. Ronald, 2002. "Cross-validated SNP density estimates," Journal of Econometrics, Elsevier, vol. 110(1), pages 27-65, September.
  6. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
  7. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
  8. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 130-168.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:van:wpaper:0420. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (John P. Conley)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.