IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals

Registered author(s):

    This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (theta) and unknown functions (h) of endogenous variables. We show that: (1) the penalized sieve minimum distance (PSMD) estimator (theta\hat,h\hat) can simultaneously achieve root-n asymptotic normality of theta\hat and nonparametric optimal convergence rate of h\hat, allowing for noncompact function parameter spaces; (2) a simple weighted bootstrap procedure consistently estimates the limiting distribution of the PSMD theta\hat; (3) the semiparametric efficiency bound formula of Ai and Chen (2003) remains valid for conditional models with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bound; (4) the centered, profiled optimally weighted PSMD criterion is asymptotically chi-square distributed. We illustrate our theories using a partially linear quantile instrumental variables (IV) regression, a Monte Carlo study, and an empirical estimation of the shape-invariant quantile IV Engel curves.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://cowles.econ.yale.edu/P/cd/d16a/d1640-r.pdf
    Download Restriction: no

    Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1640R.

    as
    in new window

    Length: 33 pages
    Date of creation: Feb 2008
    Date of revision: Jul 2009
    Publication status: Published in Journal of Econometrics (September 2009), 152: 46-60
    Handle: RePEc:cwl:cwldpp:1640r
    Contact details of provider: Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
    Phone: (203) 432-3702
    Fax: (203) 432-6167
    Web page: http://cowles.econ.yale.edu/

    More information through EDIRC

    Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Xiaohong Chen & Demian Pouzo, 2008. "Estimation of nonparametric conditional moment models with possibly nonsmooth moments," CeMMAP working papers CWP12/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, 05.
    3. Oliver Linton, 1993. "Second Order Approximation in the Partially Linear Regression Model," Cowles Foundation Discussion Papers 1065, Cowles Foundation for Research in Economics, Yale University.
    4. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76 Elsevier.
    5. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    6. Joel Horowitz & Sokbae 'Simon' Lee, 2006. "Nonparametric instrumental variables estimation of a quantile regression model," CeMMAP working papers CWP09/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Xiaohong Chen & Demian Pouzo, 2008. "Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments," Cowles Foundation Discussion Papers 1650, Cowles Foundation for Research in Economics, Yale University, revised Oct 2008.
    8. Yoshihiko Nishiyama & Peter M. Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 73(3), pages 903-948, 05.
    9. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    10. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    11. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(01), pages 1-31, February.
    12. Yoshihiko Nishiyama & Peter M Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," STICERD - Econometrics Paper Series /2005/483, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Xiaohong Chen & Demian Pouzo, 2008. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," CeMMAP working papers CWP09/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
    15. Ma, Shuangge & Kosorok, Michael R., 2005. "Robust semiparametric M-estimation and the weighted bootstrap," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 190-217, September.
    16. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    17. Robinson, P M, 1995. "The Normal Approximation for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 63(3), pages 667-80, May.
    18. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    19. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
    20. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1640r. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.