IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v66y1998i2p289-314.html
   My bibliography  Save this article

Sieve Extremum Estimates for Weakly Dependent Data

Author

Listed:
  • Xiaohong Chen
  • Xiaotong Shen

Abstract

Many non/semiparametric time series estimates may be regarded as different forms of sieve extremum estimates. For stationary absolute regular mixing observations, the authors obtain convergence rates of sieve extremurn estimates and root-n asymptotic normality of 'plug-in' sieve extremum estimates of smooth functionals. As applications to time series models, they give convergence rates for nonparametric ARX(p,q) regression via neural networks, splines, wavelets; root-n asymptotic normality for partial linear additive AR(p) models, and monotone transformation AR(1) models.

Suggested Citation

  • Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
  • Handle: RePEc:ecm:emetrp:v:66:y:1998:i:2:p:289-314
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:66:y:1998:i:2:p:289-314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.