IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Sieve Quasi Likelihood Ratio Inference on Semi/nonparametric Conditional Moment Models

Registered author(s):

    This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals. These models belong to the difficult (nonlinear) ill-posed inverse problems with unknown operators, and include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is generally difficult to verify whether a functional is regular (i.e., root-n estimable) or irregular (i.e., slower than root-n estimable). In this paper we provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is regular or irregular. We establish the following new results: (1) the asymptotic normality of the plug-in penalized sieve minimum distance (PSMD) estimators of the (possibly irregular) functionals; (2) the consistency of sieve variance estimators of the plug-in PSMD estimators; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood ratio (SQLR) statistic; (4) the asymptotic tight distribution of a possibly non-optimally weighted SQLR statistic; (5) the consistency of the nonparametric bootstrap and the weighted bootstrap (possibly non-optimally weighted) SQLR and sieve Wald statistics, which are proved under virtually the same conditions as those for the original-sample statistics. Small simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://cowles.econ.yale.edu/P/cd/d18b/d1897.pdf
    Download Restriction: no

    Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1897.

    as
    in new window

    Length: 43 pages
    Date of creation: May 2013
    Date of revision:
    Handle: RePEc:cwl:cwldpp:1897
    Contact details of provider: Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
    Phone: (203) 432-3702
    Fax: (203) 432-6167
    Web page: http://cowles.econ.yale.edu/

    More information through EDIRC

    Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    2. Serge Darolles & Jean-Pierre Florens & Yanqin Fan & Eric Renault, 2011. "Nonparametric Instrumental Regression," Working Papers 245432, Institut National de la Recherche Agronomique, France.
    3. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, 09.
    4. Joel Horowitz & Sokbae 'Simon' Lee, 2006. "Nonparametric instrumental variables estimation of a quantile regression model," CeMMAP working papers CWP09/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Donald W. K. Andrews & Moshe Buchinsky, 2000. "A Three-Step Method for Choosing the Number of Bootstrap Repetitions," Econometrica, Econometric Society, vol. 68(1), pages 23-52, January.
    6. Xiaohong Chen & Sydney C. Ludvigson, 2009. "Land of addicts? an empirical investigation of habit-based asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1057-1093.
    7. Otsu, Taisuke, 2011. "Empirical Likelihood Estimation Of Conditional Moment Restriction Models With Unknown Functions," Econometric Theory, Cambridge University Press, vol. 27(01), pages 8-46, February.
    8. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    9. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    10. Gallant, A.R. & Tauchen, G., 1988. "Seminonparametric Estimation Of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Papers 88-59, Chicago - Graduate School of Business.
    11. Joel L. Horowitz, 2007. "Asymptotic Normality Of A Nonparametric Instrumental Variables Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1329-1349, November.
    12. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    13. Xiaohong Chen & Zhipeng Liao & Yixiao Sun, 2012. "Sieve inference on semi-nonparametric time series models," CeMMAP working papers CWP06/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, 03.
    15. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1897. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.