IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v79y2011i5p1541-1565.html
   My bibliography  Save this article

Nonparametric Instrumental Regression

Author

Listed:
  • S. Darolles
  • Y. Fan
  • J. P. Florens
  • E. Renault

Abstract

The focus of this paper is the nonparametric estimation of an instrumental regression function f defined by conditional moment restrictions that stem from a structural econometric model E[Y − f (Z) | W] = 0, and involve endogenous variables Y and Z and instruments W. The function f is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyzes identification and overidentification of this model, and presents asymptotic properties of the estimated nonparametric instrumental regression function.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
  • Handle: RePEc:ecm:emetrp:v:79:y:2011:i:5:p:1541-1565
    DOI: ECTA6539
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA6539
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    2. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    3. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    4. Jean-Pierre Florens & Anna Simoni, 2012. "Regularized Posteriors in Linear Ill-Posed Inverse Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 214-235, June.
    5. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    6. JOHANNES, Jan & VAN BELLEGHEM, Sébastien & VANHEMS, Anne, 2007. "A unified approach to solve ill-posed inverse problems in econometrics," LIDAM Discussion Papers CORE 2007083, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Amemiya, Takeshi, 1975. "The nonlinear limited-information maximum- likelihood estimator and the modified nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 3(4), pages 375-386, November.
    8. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, May.
    9. Joel L. Horowitz, 2007. "Asymptotic Normality Of A Nonparametric Instrumental Variables Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1329-1349, November.
    10. Florens, J.P. & Mouchart, M. & Rolin, J.M., 1993. "Noncausality and Marginalization of Markov Processes," Econometric Theory, Cambridge University Press, vol. 9(2), pages 241-262, April.
    11. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sébastien, 2011. "Identification And Estimation By Penalization In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 27(3), pages 472-496, June.
    12. Richard Blundell & Joel L. Horowitz, 2007. "A Non-Parametric Test of Exogeneity," Review of Economic Studies, Oxford University Press, vol. 74(4), pages 1035-1058.
    13. P. Gagliardini & O. Scaillet, 2006. "Tikhonov Regularization for Functional Minimum Distance Estimators," Swiss Finance Institute Research Paper Series 06-30, Swiss Finance Institute, revised Nov 2006.
    14. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    15. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    16. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    17. Rothe, Christoph, 2010. "Nonparametric estimation of distributional policy effects," Journal of Econometrics, Elsevier, vol. 155(1), pages 56-70, March.
    18. Joel L. Horowitz & Sokbae Lee, 2007. "Nonparametric Instrumental Variables Estimation of a Quantile Regression Model," Econometrica, Econometric Society, vol. 75(4), pages 1191-1208, July.
    19. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    2. Asin, Nicolas & Johannes, Jan, 2016. "Adaptive non-parametric instrumental regression in the presence of dependence," LIDAM Discussion Papers ISBA 2016015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    4. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    5. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    6. Escanciano, Juan Carlos & Li, Wei, 2021. "Optimal Linear Instrumental Variables Approximations," Journal of Econometrics, Elsevier, vol. 221(1), pages 223-246.
    7. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    8. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    9. Fabian Dunker, 2015. "Nonparametric instrumental variable regression and quantile regression with full independence," Papers 1511.03977, arXiv.org, revised Apr 2020.
    10. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    12. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    13. Chen, Xiaohong & Pouzo, Demian, 2008. "Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments," Working Papers 47, Yale University, Department of Economics.
    14. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
    15. Joel L. Horowitz, 2013. "Adaptive nonparametric instrumental variables estimation: empirical choice of the regularization parameter," CeMMAP working papers CWP30/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Christoph Breunig, 2019. "Specification Testing in Nonparametric Instrumental Quantile Regression," Papers 1909.10129, arXiv.org.
    17. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    18. Fève, Frédérique & Florens, Jean-Pierre, 2014. "Non parametric analysis of panel data models with endogenous variables," Journal of Econometrics, Elsevier, vol. 181(2), pages 151-164.
    19. Breunig, Christoph, 2015. "Goodness-of-fit tests based on series estimators in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 184(2), pages 328-346.
    20. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:79:y:2011:i:5:p:1541-1565. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.