IDEAS home Printed from https://ideas.repec.org/p/ide/wpaper/1038.html
   My bibliography  Save this paper

Spectral Method for Deconvolving a Density

Author

Listed:
  • Carrasco, Marine
  • Florens, Jean-Pierre

Abstract

We propose a new estimator for the density of a random variable observed with an additive measurement error. This estimator is based on the spectral decomposition of the convolution operator, which is compact for an appropriate choice of reference spaces. The density is approximated by a sequence of orthonormal eigenfunctions of the convolution operator. The resulting estimator is shown to be consistent and asymptotically normal. While most estimation methods assume that the characteristic function (CF) of the error does not vanish, we relax this assumption and allow for isolated zeros. For instance, the CF of the uniform and symmetrically truncated normal distributions have isolated zeros. We show that, in the presence of zeros, the density is identified even though the convolution operator is not one-to-one. We propose two consistent estimators of the density. We apply our method to the estimation of the measurement error density of hourly income collected from survey data.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Carrasco, Marine & Florens, Jean-Pierre, 2002. "Spectral Method for Deconvolving a Density," IDEI Working Papers 138, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2009.
  • Handle: RePEc:ide:wpaper:1038
    as

    Download full text from publisher

    File URL: http://idei.fr/sites/default/files/medias/doc/wp/2009/conv_final.pdf
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Victor Chernozhukov & Patrick Gagliardini & Olivier Scaillet, 2006. "Nonparametric Instrumental Variable Estimators of Structural Quantile Effects," Swiss Finance Institute Research Paper Series 08-03, Swiss Finance Institute, revised Aug 2009.
    3. Carrasco, Marine & Florens, Jean-Pierre, 2002. "Simulation-Based Method of Moments and Efficiency," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 482-492, October.
    4. Fabien Postel-Vinay & Jean-Marc Robin, 2002. "Equilibrium Wage Dispersion with Worker and Employer Heterogeneity," Econometrica, Econometric Society, vol. 70(6), pages 2295-2350, November.
    5. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    6. Neumann, Michael H., 2007. "Deconvolution from panel data with unknown error distribution," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1955-1968, November.
    7. Geweke, John, 1988. "Antithetic acceleration of Monte Carlo integration in Bayesian inference," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 73-89.
    8. Joel L. Horowitz & Marianthi Markatou, 1996. "Semiparametric Estimation of Regression Models for Panel Data," Review of Economic Studies, Oxford University Press, vol. 63(1), pages 145-168.
    9. Patrick Gagliardini & Olivier Scaillet, 2012. "Nonparametric Instrumental Variable Estimation of Structural Quantile Effects," Econometrica, Econometric Society, vol. 80(4), pages 1533-1562, July.
    10. P. Groeneboom & G. Jongbloed, 2003. "Density estimation in the uniform deconvolution model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 136-157.
    11. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    12. Raymond J. Carroll & Peter Hall, 2004. "Low order approximations in deconvolution and regression with errors in variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 31-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Zanhua & Gao, Wei & Tang, Man-Lai & Tian, Guo-Liang, 2013. "Estimation of nonparametric regression models with a mixture of Berkson and classical errors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1151-1162.
    2. Evdokimov, Kirill & White, Halbert, 2012. "Some Extensions Of A Lemma Of Kotlarski," Econometric Theory, Cambridge University Press, vol. 28(04), pages 925-932, August.
    3. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    4. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    5. Babii, Andrii, 2017. "Honest confidence sets in nonparametric IV regression and other ill-posed models," TSE Working Papers 17-803, Toulouse School of Economics (TSE).
    6. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2016. "Robust frontier estimation from noisy data: a Tikhonov regularization approach," TSE Working Papers 16-665, Toulouse School of Economics (TSE), revised Feb 2018.
    7. Susanne M. Schennach, 2013. "Convolution without independence," CeMMAP working papers CWP46/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers CWP34/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Irene Botosaru, 2017. "Identifying Distributions in a Panel Model with Heteroskedasticity: An Application to Earnings Volatility," Discussion Papers dp17-11, Department of Economics, Simon Fraser University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:1038. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: () or (Mikhail Salazkin). General contact details of provider: http://edirc.repec.org/data/idtlsfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.