IDEAS home Printed from https://ideas.repec.org/p/ide/wpaper/1038.html
   My bibliography  Save this paper

Spectral Method for Deconvolving a Density

Author

Listed:
  • Carrasco, Marine
  • Florens, Jean-Pierre

Abstract

We propose a new estimator for the density of a random variable observed with an additive measurement error. This estimator is based on the spectral decomposition of the convolution operator, which is compact for an appropriate choice of reference spaces. The density is approximated by a sequence of orthonormal eigenfunctions of the convolution operator. The resulting estimator is shown to be consistent and asymptotically normal. While most estimation methods assume that the characteristic function (CF) of the error does not vanish, we relax this assumption and allow for isolated zeros. For instance, the CF of the uniform and symmetrically truncated normal distributions have isolated zeros. We show that, in the presence of zeros, the density is identified even though the convolution operator is not one-to-one. We propose two consistent estimators of the density. We apply our method to the estimation of the measurement error density of hourly income collected from survey data.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Carrasco, Marine & Florens, Jean-Pierre, 2002. "Spectral Method for Deconvolving a Density," IDEI Working Papers 138, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2009.
  • Handle: RePEc:ide:wpaper:1038
    as

    Download full text from publisher

    File URL: https://tse-fr.eu/sites/default/files/medias/doc/wp/2009/conv_final.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Victor Chernozhukov & Patrick Gagliardini & Olivier Scaillet, 2008. "Nonparametric Instrumental Variable Estimators of Structural Quantile Effects," Swiss Finance Institute Research Paper Series 08-03, Swiss Finance Institute, revised Aug 2009.
    3. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    4. repec:spo:wpmain:info:hdl:2441/c8dmi8nm4pdjkuc9g8grh35j2 is not listed on IDEAS
    5. Fabien Postel-Vinay & Jean-Marc Robin, 2002. "Equilibrium Wage Dispersion with Worker and Employer Heterogeneity," Econometrica, Econometric Society, vol. 70(6), pages 2295-2350, November.
    6. Geweke, John, 1988. "Antithetic acceleration of Monte Carlo integration in Bayesian inference," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 73-89.
    7. Joel L. Horowitz & Marianthi Markatou, 1996. "Semiparametric Estimation of Regression Models for Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(1), pages 145-168.
    8. Patrick Gagliardini & Olivier Scaillet, 2012. "Nonparametric Instrumental Variable Estimation of Structural Quantile Effects," Econometrica, Econometric Society, vol. 80(4), pages 1533-1562, July.
    9. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    10. Raymond J. Carroll & Peter Hall, 2004. "Low order approximations in deconvolution and regression with errors in variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 31-46, February.
    11. repec:hal:spmain:info:hdl:2441/c8dmi8nm4pdjkuc9g8grh35j2 is not listed on IDEAS
    12. Fabien Postel-Vinay & Jean-Marc Robin, 2002. "Equilibrium Wage Dispersion with Worker and Employer Heterogeneity," Post-Print hal-03458567, HAL.
    13. Carrasco, Marine & Florens, Jean-Pierre, 2002. "Simulation-Based Method of Moments and Efficiency," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 482-492, October.
    14. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    15. Neumann, Michael H., 2007. "Deconvolution from panel data with unknown error distribution," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1955-1968, November.
    16. repec:spo:wpmain:info:hdl:2441/dc0ckec3fcb29ms985085gkbp is not listed on IDEAS
    17. P. Groeneboom & G. Jongbloed, 2003. "Density estimation in the uniform deconvolution model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 136-157, February.
    18. repec:hal:spmain:info:hdl:2441/dc0ckec3fcb29ms985085gkbp is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Escanciano & Wei Li, 2013. "On the identification of structural linear functionals," CeMMAP working papers 48/13, Institute for Fiscal Studies.
    2. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1265-1305, December.
    3. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    4. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2011. "Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator," Econometric Theory, Cambridge University Press, vol. 27(3), pages 522-545, June.
    5. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    6. Xiaohong Chen & Demian Pouzo, 2008. "Estimation of nonparametric conditional moment models with possibly nonsmooth moments," CeMMAP working papers CWP12/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Gautier, Eric & Hoderlein, Stefan, 2011. "A triangular treatment effect model with random coefficients in the selection equation," TSE Working Papers 15-598, Toulouse School of Economics (TSE), revised 25 Aug 2015.
    8. Manuel Arellano & Stéphane Bonhomme, 2023. "Recovering Latent Variables by Matching," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 693-706, January.
    9. Shintaro Yamaguchi, 2010. "Job Search, Bargaining, and Wage Dynamics," Journal of Labor Economics, University of Chicago Press, vol. 28(3), pages 595-631, July.
    10. Eric Gautier & Stefan Soderlein, 2011. "Estimating the Distribution of Treatment Effects," Working Papers 2011-25, Center for Research in Economics and Statistics.
    11. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Antonio Merlo & Aureo de Paula, 2010. "Identification and Estimation of Preference Distributions When Voters Are Ideological, Second Version," PIER Working Paper Archive 13-055, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 13 Oct 2013.
    13. Jackson Bunting, 2022. "Continuous permanent unobserved heterogeneity in dynamic discrete choice models," Papers 2202.03960, arXiv.org, revised Sep 2025.
    14. Senay Sokullu, 2012. "Nonparametric Analysis of Two-Sided Markets," Bristol Economics Discussion Papers 12/628, School of Economics, University of Bristol, UK.
    15. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
    16. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    17. Atal, Vidya & Bar, Talia & Gordon, Sidartha, 2016. "Project selection: Commitment and competition," Games and Economic Behavior, Elsevier, vol. 96(C), pages 30-48.
    18. Jeremy T. Fox, 2010. "Estimating the Employer Switching Costs and Wage Responses of Forward-Looking Engineers," Journal of Labor Economics, University of Chicago Press, vol. 28(2), pages 357-412, April.
    19. Chéron, Arnaud & Hairault, Jean-Olivier & Langot, François, 2004. "Labor Market Institutions and the Employment-Productivity Trade-Off: A Wage Posting Approach," IZA Discussion Papers 1364, Institute of Labor Economics (IZA).
    20. Nobuhiro Kiyotaki & Ricardo Lagos, 2007. "A Model of Job and Worker Flows," Journal of Political Economy, University of Chicago Press, vol. 115(5), pages 770-819, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:1038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/idtlsfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.