IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/48-13.html
   My bibliography  Save this paper

On the identification of structural linear functionals

Author

Listed:
  • Juan Carlos Escanciano

    (Institute for Fiscal Studies)

  • Wei Li

    (Institute for Fiscal Studies)

Abstract

This paper asks which aspects of a structural Nonparametric Instrumental Variables Regression (NPIVR) can be identified well and which ones cannot. It contributes to answering this question by characterising the identified set of linear continuous functionals of the NPIVR under norm constraints. Each element of the identified set of NPIVR can be written as the sum of a common 'identifiable component' and an idiosyncratic 'unidentifiable component'. The identified set for any continuous linear functional is shown to be a closed interval, whose midpoint is the functional applied to the 'identifiable component'. The formula for the length of the identified set extends the popular omitted variables formula of classical linear regression. Some examples illustrate the wide applicability and utility of our identification result, including bounds and a new identification condition for point-evaluation functionals. The main ideas are illustrated with an empirical application of the effect of children on labour market outcomes.

Suggested Citation

  • Juan Carlos Escanciano & Wei Li, 2013. "On the identification of structural linear functionals," CeMMAP working papers CWP48/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:48/13
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp481313.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(03), pages 497-521, June.
    2. Victor Chernozhukov & Patrick Gagliardini & Olivier Scaillet, 2006. "Nonparametric Instrumental Variable Estimators of Structural Quantile Effects," Swiss Finance Institute Research Paper Series 08-03, Swiss Finance Institute, revised Aug 2009.
    3. David Card, 1995. "The Wage Curve: A Review," Journal of Economic Literature, American Economic Association, vol. 33(2), pages 285-299, June.
    4. Abadir,Karim M. & Magnus,Jan R., 2005. "Matrix Algebra," Cambridge Books, Cambridge University Press, number 9780521537469, May.
    5. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sébastien, 2011. "Identification And Estimation By Penalization In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 27(03), pages 472-496, June.
    6. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(06), pages 1265-1305, December.
    7. Severini, Thomas A. & Tripathi, Gautam, 2006. "Some Identification Issues In Nonparametric Linear Models With Endogenous Regressors," Econometric Theory, Cambridge University Press, vol. 22(02), pages 258-278, April.
    8. Andres Santos, 2012. "Inference in Nonparametric Instrumental Variables With Partial Identification," Econometrica, Econometric Society, vol. 80(1), pages 213-275, January.
    9. Bronars, Stephen G & Grogger, Jeff, 1994. "The Economic Consequences of Unwed Motherhood: Using Twin Births as a Natural Experiment," American Economic Review, American Economic Association, vol. 84(5), pages 1141-1156, December.
    10. Santos, Andres, 2011. "Instrumental variable methods for recovering continuous linear functionals," Journal of Econometrics, Elsevier, vol. 161(2), pages 129-146, April.
    11. Angrist, Joshua D & Evans, William N, 1998. "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size," American Economic Review, American Economic Association, vol. 88(3), pages 450-477, June.
    12. Severini, Thomas A. & Tripathi, Gautam, 2012. "Efficiency bounds for estimating linear functionals of nonparametric regression models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 491-498.
    13. Patrick Gagliardini & Olivier Scaillet, 2012. "Nonparametric Instrumental Variable Estimation of Structural Quantile Effects," Econometrica, Econometric Society, vol. 80(4), pages 1533-1562, July.
    14. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
    15. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    16. repec:cup:cbooks:9780521822893 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:48/13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.