IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00403939.html
   My bibliography  Save this paper

Nonparametric estimation in random coefficients binary choice models

Author

Listed:
  • Eric Gautier

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris)

  • Yuichi Kitamura

    (Cowles Foundation for Research in Economics - Yale University [New Haven])

Abstract

This paper considers random coefficients binary choice models. The main goal is to estimate the density of the random coefficients nonparametrically. This is an ill-posed inverse problem characterized by an integral transform. A new density estimator for the random coefficients is developed, utilizing Fourier-Laplace series on spheres. This approach offers a clear insight on the identification problem. More importantly, it leads to a closed form estimator formula that yields a simple plug-in procedure requiring no numerical optimization. The new estimator, therefore, is easy to implement in empirical applications, while being flexible about the treatment of unobserved heterogeneity. Extensions including treatments of non-random coefficients and models with endogeneity are discussed.

Suggested Citation

  • Eric Gautier & Yuichi Kitamura, 2011. "Nonparametric estimation in random coefficients binary choice models," Working Papers hal-00403939, HAL.
  • Handle: RePEc:hal:wpaper:hal-00403939
    Note: View the original document on HAL open archive server: https://hal.science/hal-00403939v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00403939v2/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    2. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    3. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    4. Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," University of California Transportation Center, Working Papers qt3tb6j874, University of California Transportation Center.
    5. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    6. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," Cowles Foundation Discussion Papers 1718, Cowles Foundation for Research in Economics, Yale University, revised Mar 2010.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, July.
    8. Andrew Chesher & J. M. C. Santos Silva, 2002. "Taste Variation in Discrete Choice Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(1), pages 147-168.
    9. Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," University of California Transportation Center, Working Papers qt1j6814b3, University of California Transportation Center.
    10. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    11. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    12. Briesch, Richard A. & Chintagunta, Pradeep K. & Matzkin, Rosa L., 2010. "Nonparametric Discrete Choice Models With Unobserved Heterogeneity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 291-307.
    13. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    14. P. Groeneboom & G. Jongbloed, 2003. "Density estimation in the uniform deconvolution model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 136-157, February.
    15. Klemelä, Jussi, 2000. "Estimation of Densities and Derivatives of Densities with Directional Data," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 18-40, April.
    16. Chris Elbers & Geert Ridder, 1982. "True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 403-409.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    2. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    3. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    4. Peter Haan, "undated". "Conditional logit versus random coefficient models: An analysis using GLLAMM," German Stata Users' Group Meetings 2004 7, Stata Users Group.
    5. Hole, Arne Risa, 2008. "Modelling heterogeneity in patients' preferences for the attributes of a general practitioner appointment," Journal of Health Economics, Elsevier, vol. 27(4), pages 1078-1094, July.
    6. Escanciano, Juan Carlos, 2023. "Irregular identification of structural models with nonparametric unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 106-127.
    7. Marcucci, Edoardo & Gatta, Valerio, 2012. "Dissecting preference heterogeneity in consumer stated choices," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 331-339.
    8. Peter Haan, 2004. "Discrete Choice Labor Supply: Conditional Logit vs. Random Coefficient Models," Discussion Papers of DIW Berlin 394, DIW Berlin, German Institute for Economic Research.
    9. Antónia Correia & Carlos Pestana Barros & António Luís Silvestre, 2007. "Golf Tourism Repeat Choice Behaviour in the Algarve: A Mixed Logit Approach," Tourism Economics, , vol. 13(1), pages 111-127, March.
    10. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    11. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    12. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    13. Carlos Barros, 2012. "Sustainable Tourism in Inhambane-Mozambique," CEsA Working Papers 105, CEsA - Centre for African and Development Studies.
    14. Bernard Fortin & Nicolas Jacquemet & Bruce Shearer, 2008. "Policy Analysis in Health-Services Market: Accounting for Quality and Quantity," Annals of Economics and Statistics, GENES, issue 91-92, pages 293-319.
    15. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    16. Basu, Debasis & Hunt, John Douglas, 2012. "Valuing of attributes influencing the attractiveness of suburban train service in Mumbai city: A stated preference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1465-1476.
    17. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    18. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    19. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    20. Christophe Gaillac & Eric Gautier, 2021. "Nonparametric classes for identification in random coefficients models when regressors have limited variation," Working Papers hal-03231392, HAL.

    More about this item

    Keywords

    Inverse problems; Discrete choice models.;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00403939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.