IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

A Poisson mixture model of discrete choice

  • Burda, Martin
  • Harding, Matthew
  • Hausman, Jerry

In this paper, we introduce a new Poisson mixture model for count panel data where the underlying Poisson process intensity is determined endogenously by consumer latent utility maximization over a set of choice alternatives. This formulation accommodates the choice and count in a single random utility framework with desirable theoretical properties. Individual heterogeneity is introduced through a random coefficient scheme with a flexible semiparametric distribution. We deal with the analytical intractability of the resulting mixture by recasting the model as an embedding of infinite sequences of scaled moments of the mixing distribution, and newly derive their cumulant representations along with bounds on their rate of numerical convergence. We further develop an efficient recursive algorithm for fast evaluation of the model likelihood within a Bayesian Gibbs sampling scheme. We apply our model to a recent household panel of supermarket visit counts. We estimate the nonparametric density of three key variables of interest–price, driving distance, and their interaction–while controlling for a range of consumer demographic characteristics. We use this econometric framework to assess the opportunity cost of time and analyze the interaction between store choice, trip frequency, search intensity, and household and store characteristics. We also conduct a counterfactual welfare experiment and compute the compensating variation for a 10%–30% increase in Walmart prices.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407611001643
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 166 (2012)
Issue (Month): 2 ()
Pages: 184-203

as
in new window

Handle: RePEc:eee:econom:v:166:y:2012:i:2:p:184-203
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mannering, Fred L. & Hamed, Mohammad M., 1990. "Occurence, frequency, and duration of commuters' work-to-home departure delay," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 99-109, April.
  2. Aviv Nevo, 1998. "Measuring Market Power in the Ready-to-Eat Cereal Industry," NBER Working Papers 6387, National Bureau of Economic Research, Inc.
  3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, june. pag.
  4. Christian Broda & Ephraim Leibtag & David E. Weinstein, 2009. "The Role of Prices in Measuring the Poor's Living Standards," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 77-97, Spring.
  5. William Greene, 2007. "Functional Form and Heterogeneity in Models for Count Data," Working Papers 07-9, New York University, Leonard N. Stern School of Business, Department of Economics.
  6. Mark Aguiar & Erik Hurst, 2007. "Life-Cycle Prices and Production," American Economic Review, American Economic Association, vol. 97(5), pages 1533-1559, December.
  7. Briesch, Richard A. & Chintagunta, Pradeep K. & Matzkin, Rosa L., 2010. "Nonparametric Discrete Choice Models With Unobserved Heterogeneity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 291-307.
  8. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-38, July.
  9. Theofanis Sapatinas, 1995. "Identifiability of mixtures of power-series distributions and related characterizations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 447-459, September.
  10. Terza, Joseph V., 1998. "Estimating count data models with endogenous switching: Sample selection and endogenous treatment effects," Journal of Econometrics, Elsevier, vol. 84(1), pages 129-154, May.
  11. Severini,Thomas A., 2005. "Elements of Distribution Theory," Cambridge Books, Cambridge University Press, number 9780521844727, june. pag.
  12. Patrick Bajari & Jeremy Fox & Kyoo il Kim & Stephen P. Ryan, 2009. "The Random Coefficients Logit Model Is Identified," NBER Working Papers 14934, National Bureau of Economic Research, Inc.
  13. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," Cowles Foundation Discussion Papers 1718, Cowles Foundation for Research in Economics, Yale University, revised Mar 2010.
  14. Andrés Romeu & Marcos Vera-Hernández, 2004. "Counts With An Endogenous Binary Regressor: A Series Expansion Approach," Working Papers. Serie AD 2004-36, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  15. Munkin, Murat K. & Trivedi, Pravin K., 2003. "Bayesian analysis of a self-selection model with multiple outcomes using simulation-based estimation: an application to the demand for healthcare," Journal of Econometrics, Elsevier, vol. 114(2), pages 197-220, June.
  16. Rendón, Silvio, 2002. "Fixed and random effects in classical and bayesian regression," UC3M Working papers. Economics we021503, Universidad Carlos III de Madrid. Departamento de Economía.
  17. Markus Jochmann & Roberto León-González, 2004. "Estimating the demand for health care with panel data: a semiparametric Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 1003-1014.
  18. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2008. "A Bayesian mixed logit-probit model for multinomial choice," Journal of Econometrics, Elsevier, vol. 147(2), pages 232-246, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:166:y:2012:i:2:p:184-203. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.