IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1706.08418.html
   My bibliography  Save this paper

Nonseparable Multinomial Choice Models in Cross-Section and Panel Data

Author

Listed:
  • Victor Chernozhukov
  • Iv'an Fern'andez-Val
  • Whitney Newey

Abstract

Multinomial choice models are fundamental for empirical modeling of economic choices among discrete alternatives. We analyze identification of binary and multinomial choice models when the choice utilities are nonseparable in observed attributes and multidimensional unobserved heterogeneity with cross-section and panel data. We show that derivatives of choice probabilities with respect to continuous attributes are weighted averages of utility derivatives in cross-section models with exogenous heterogeneity. In the special case of random coefficient models with an independent additive effect, we further characterize that the probability derivative at zero is proportional to the population mean of the coefficients. We extend the identification results to models with endogenous heterogeneity using either a control function or panel data. In time stationary panel models with two periods, we find that differences over time of derivatives of choice probabilities identify utility derivatives "on the diagonal," i.e. when the observed attributes take the same values in the two periods. We also show that time stationarity does not identify structural derivatives "off the diagonal" both in continuous and multinomial choice panel models.

Suggested Citation

  • Victor Chernozhukov & Iv'an Fern'andez-Val & Whitney Newey, 2017. "Nonseparable Multinomial Choice Models in Cross-Section and Panel Data," Papers 1706.08418, arXiv.org, revised May 2018.
  • Handle: RePEc:arx:papers:1706.08418
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1706.08418
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Ye Luo, 2018. "The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages," Econometrica, Econometric Society, vol. 86(6), pages 1911-1938, November.
    2. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    3. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," Cowles Foundation Discussion Papers 1718, Cowles Foundation for Research in Economics, Yale University, revised Mar 2010.
    4. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    5. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    6. Xiaoxia Shi & Matthew Shum & Wei Song, 2018. "Estimating Semi‐Parametric Panel Multinomial Choice Models Using Cyclic Monotonicity," Econometrica, Econometric Society, vol. 86(2), pages 737-761, March.
    7. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    8. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2008. "A Bayesian mixed logit-probit model for multinomial choice," Journal of Econometrics, Elsevier, vol. 147(2), pages 232-246, December.
    9. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    10. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    11. Abrevaya, Jason, 2000. "Rank estimation of a generalized fixed-effects regression model," Journal of Econometrics, Elsevier, vol. 95(1), pages 1-23, March.
    12. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    13. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
    14. Soren Blomquist & Anil Kumar & Che-Yuan Liang & Whitney K. Newey, 2014. "Individual heterogeneity, nonlinear budget sets, and taxable income," CeMMAP working papers CWP21/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," Review of Economic Studies, Oxford University Press, vol. 71(3), pages 655-679.
    16. Stefan Hoderlein & Enno Mammen, 2007. "Identification of Marginal Effects in Nonseparable Models Without Monotonicity," Econometrica, Econometric Society, vol. 75(5), pages 1513-1518, September.
    17. Jerry Hausman & Whitney K. Newey, 2014. "Individual Heterogeneity and Average Welfare," CeMMAP working papers CWP42/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    19. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    20. Sasaki, Yuya, 2015. "What Do Quantile Regressions Identify For General Structural Functions?," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1102-1116, October.
    21. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    22. Bryan S. Graham & James L. Powell, 2012. "Identification and Estimation of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel Data Models," Econometrica, Econometric Society, vol. 80(5), pages 2105-2152, September.
    23. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Jerry Hausman & Whitney K. Newey, 2019. "Demand analysis with many prices," CeMMAP working papers CWP59/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1706.08418. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.