IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/31-17.html
   My bibliography  Save this paper

Binarization for panel models with fixed effects

Author

Listed:
  • Irene Botosaru

    (Institute for Fiscal Studies)

  • Chris Muris

    () (Institute for Fiscal Studies and Simon Fraser University)

Abstract

In nonlinear panel models with fixed effects and fixed-T, the incidental parameter problem poses identification difficulties for structural parameters and partial effects. Existing solutions are model-specific, likelihood-based, impose time homogeneity, or restrict the distribution of unobserved heterogeneity. We provide new identification results for the large class of Fixed Effects Linear Transformation (FELT) models with unknown, time-varying, weakly monotone transformation functions. Our results accommodate continuous and discrete outcomes and covariates, require only two time periods and no parametric distributional assumptions. First, we provide a systematic solution to the incidental parameter problem in FELT via binarization, which transforms FELT into many binary choice models. Second, we identify the distribution of counterfactual outcomes and a menu of time-varying partial effects. Third, we obtain new results for nonlinear difference-in-differences with discrete and censored outcomes, and for FELT with random coefficients. Finally, we propose rank- and likelihood-based estimators that achieve vn rate of convergence.

Suggested Citation

  • Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers CWP31/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:31/17
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/CWP311717.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Machado, Matilde P., 2004. "A consistent estimator for the binomial distribution in the presence of "incidental parameters": an application to patent data," Journal of Econometrics, Elsevier, vol. 119(1), pages 73-98, March.
    2. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    3. Jochmans, Koen, 2012. "The variance of a rank estimator of transformation models," Economics Letters, Elsevier, vol. 117(1), pages 168-169.
    4. Gregori Baetschmann & Kevin E. Staub & Rainer Winkelmann, 2015. "Consistent estimation of the fixed effects ordered logit model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 685-703, June.
    5. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    6. Songnian Chen, 2002. "Rank Estimation of Transformation Models," Econometrica, Econometric Society, vol. 70(4), pages 1683-1697, July.
    7. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.
    8. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    9. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    10. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    11. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    12. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    13. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    14. Florens, Jean-Pierre & Sokullu, Senay, 2017. "Nonparametric Estimation Of Semiparametric Transformation Models," Econometric Theory, Cambridge University Press, vol. 33(4), pages 839-873, August.
    15. Iván Fernández‐Val & Joonhwah Lee, 2013. "Panel data models with nonadditive unobserved heterogeneity: Estimation and inference," Quantitative Economics, Econometric Society, vol. 4(3), pages 453-481, November.
    16. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    17. Stéphane Bonhomme, 2012. "Functional Differencing," Econometrica, Econometric Society, vol. 80(4), pages 1337-1385, July.
    18. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    19. Ariel Pakes & Jack Porter, 2016. "Moment Inequalities for Multinomial Choice with Fixed Effects," NBER Working Papers 21893, National Bureau of Economic Research, Inc.
    20. Ekaterini Kyriazidou, 1997. "Estimation of a Panel Data Sample Selection Model," Econometrica, Econometric Society, vol. 65(6), pages 1335-1364, November.
    21. Gary Chamberlain, 2010. "Binary Response Models for Panel Data: Identification and Information," Econometrica, Econometric Society, vol. 78(1), pages 159-168, January.
    22. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    23. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    24. Stéphane Bonhomme & Ulrich Sauder, 2011. "Recovering Distributions in Difference-in-Differences Models: A Comparison of Selective and Comprehensive Schooling," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 479-494, May.
    25. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    26. Abrevaya, Jason, 2000. "Rank estimation of a generalized fixed-effects regression model," Journal of Econometrics, Elsevier, vol. 95(1), pages 1-23, March.
    27. Xavier D'Haultfoeuille & Stefan Hoderlein & Yuya Sasaki, 2013. "Nonlinear Difference-in-Differences in Repeated Cross Sections with Continuous Treatments," Boston College Working Papers in Economics 839, Boston College Department of Economics.
    28. Chen, Songnian, 2010. "Root-N-consistent estimation of fixed-effect panel data transformation models with censoring," Journal of Econometrics, Elsevier, vol. 159(1), pages 222-234, November.
    29. Bester, C. Alan & Hansen, Christian, 2009. "Identification of Marginal Effects in a Nonparametric Correlated Random Effects Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 235-250.
    30. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    31. Abrevaya, Jason, 1999. "Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 93(2), pages 203-228, December.
    32. Bryan S. Graham & James L. Powell, 2012. "Identification and Estimation of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel Data Models," Econometrica, Econometric Society, vol. 80(5), pages 2105-2152, September.
    33. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, July.
    34. Chris Muris, 2017. "Estimation in the Fixed-Effects Ordered Logit Model," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 465-477, July.
    35. Tony Lancaster, 2002. "Orthogonal Parameters and Panel Data," Review of Economic Studies, Oxford University Press, vol. 69(3), pages 647-666.
    36. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    37. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    38. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    39. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chrysanthou, Georgios Marios & Vasilakis, Chrysovalantis, 2018. "The Dynamics and Determinants of Bullying Victimisation," IZA Discussion Papers 11902, Institute of Labor Economics (IZA).
    2. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Papers 2008.05507, arXiv.org.
    3. Bo E. Honor'e & Martin Weidner, 2020. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," Papers 2005.05942, arXiv.org, revised Jun 2020.
    4. Eleni (E.) Aristodemou, 2018. "Semiparametric Identification in Panel Data Discrete Response Models," Tinbergen Institute Discussion Papers 18-065/III, Tinbergen Institute.
    5. Chrysanthou, Georgios Marios & Vasilakis, Chrysovalantis, 2018. "The Dynamics and Determinants of Bullying Victimisation," IZA Discussion Papers 11902, Institute of Labor Economics (IZA).
    6. Aristodemou, Eleni, 2021. "Semiparametric identification in panel data discrete response models," Journal of Econometrics, Elsevier, vol. 220(2), pages 253-271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    2. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    3. Čížek, Pavel & Lei, Jinghua, 2018. "Identification and estimation of nonseparable single-index models in panel data with correlated random effects," Journal of Econometrics, Elsevier, vol. 203(1), pages 113-128.
    4. Ishihara, Takuya, 2020. "Identification and estimation of time-varying nonseparable panel data models without stayers," Journal of Econometrics, Elsevier, vol. 215(1), pages 184-208.
    5. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    6. Dhaene, Geert & Sun, Yutao, 2021. "Second-order corrected likelihood for nonlinear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 220(2), pages 227-252.
    7. Santiago Pereda Fernández, 2016. "Copula-based random effects models for clustered data," Temi di discussione (Economic working papers) 1092, Bank of Italy, Economic Research and International Relations Area.
    8. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    9. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
    10. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    11. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    12. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    13. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    14. Gao, Yichen & Li, Cong & Liang, Zhongwen, 2015. "Binary response correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 188(2), pages 421-434.
    15. Manuel Arellano, 2003. "Discrete choices with panel data," Investigaciones Economicas, Fundación SEPI, vol. 27(3), pages 423-458, September.
    16. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    17. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    18. Cizek, P. & Lei, J., 2013. "Identification and Estimation of Nonseparable Single-Index Models in Panel Data with Correlated Random Effects," Other publications TiSEM 73e394eb-6799-4c79-af23-8, Tilburg University, School of Economics and Management.
    19. Cizek, P. & Lei, J., 2013. "Identification and Estimation of Nonseparable Single-Index Models in Panel Data with Correlated Random Effects," Discussion Paper 2013-062, Tilburg University, Center for Economic Research.
    20. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    21. Chernozhukov, Victor & Fernández-Val, Iván & Newey, Whitney K., 2019. "Nonseparable multinomial choice models in cross-section and panel data," Journal of Econometrics, Elsevier, vol. 211(1), pages 104-116.

    More about this item

    Keywords

    C14; C23; C41.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:31/17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.