IDEAS home Printed from https://ideas.repec.org/p/bos/wpaper/wp2010-001.html
   My bibliography  Save this paper

Panel Data Models with Nonadditive Unobserved Heterogeneity: Estimation and Inference

Author

Listed:
  • Iván Fernández-Val

    (Boston University, Department of Economics)

  • Joonhwan Lee

    (MIT)

Abstract

The main purpose of this paper is to estimate panel data models with endogenous regressors and nonadditive unobserved individual heterogeneity including, for example, linear and nonlinear models where all the parameters can vary across individuals. The quantities of interest are means, variances, and other moments of the individual parameters. Since estimates of these quantities based on individual by individual GMM estimation can be severely biased due to the incidental parameter problem, we develop bias corrections that give more accurate estimates in moderately long panels. These corrections, derived from large-T expansions of the finite-sample bias of fixed effects GMM estimators, reduce the order of the bias from O(T¡1) to O(T¡2) and center the asymptotic distributions at the true values in moderately long panels under asymptotic sequences where n = o(T3). An empirical example on cigarette demand based on Becker, Grossman and Murphy (1994) shows significant heterogeneity in the price effect across U.S. states.

Suggested Citation

  • Iván Fernández-Val & Joonhwan Lee, "undated". "Panel Data Models with Nonadditive Unobserved Heterogeneity: Estimation and Inference," Boston University - Department of Economics - Working Papers Series wp2010-001, Boston University - Department of Economics.
  • Handle: RePEc:bos:wpaper:wp2010-001
    as

    Download full text from publisher

    File URL: http://www.bu.edu/econ/workingpapers/papers/Ivan%20Fernandez-Val/panelgmm_jan_18_2010.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    3. Hahn, Jinyong & Kuersteiner, Guido, 2011. "Bias Reduction For Dynamic Nonlinear Panel Models With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1152-1191, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqi Xiao & Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis & Jan Ditzen, 2023. "Improved tests for Granger noncausality in panel data," Stata Journal, StataCorp LP, vol. 23(1), pages 230-242, March.
    2. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    3. repec:hal:spmain:info:hdl:2441/75dbbb2hc596np6q8flqf6i79k is not listed on IDEAS
    4. Koen Jochmans, 2017. "Two-Way Models for Gravity," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 478-485, July.
    5. Iván Fernández-Val & Martin Weidner, 2018. "Fixed Effects Estimation of Large-TPanel Data Models," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 109-138, August.
    6. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    7. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    8. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    9. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.
    10. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    11. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor & Varneskov, Rasmus T., 2019. "Unified inference for nonlinear factor models from panels with fixed and large time span," Journal of Econometrics, Elsevier, vol. 212(1), pages 4-25.
    12. Ryo Okui & Takahide Yanagi, 2020. "Kernel estimation for panel data with heterogeneous dynamics," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 156-175.
    13. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    14. Ivan Fernandez-Val & Martin Weidner, 2014. "Individual and time effects in nonlinear panel models with large N , T," CeMMAP working papers 32/14, Institute for Fiscal Studies.
    15. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    16. Ivan Fernandez-Val & Wayne Yuan Gao & Yuan Liao & Francis Vella, 2022. "Dynamic Heterogeneous Distribution Regression Panel Models, with an Application to Labor Income Processes," Papers 2202.04154, arXiv.org, revised Jan 2023.
    17. Arturas Juodis & Yiannis Karavias, 2019. "Partially heterogeneous tests for Granger non-causality in panel data," Bank of Lithuania Working Paper Series 59, Bank of Lithuania.
    18. repec:spo:wpmain:info:hdl:2441/75dbbb2hc596np6q8flqf6i79k is not listed on IDEAS
    19. Ivan Fernandez-Val & Martin Weidner, 2015. "Individual and time effects in nonlinear panel models with large N , T," CeMMAP working papers 17/15, Institute for Fiscal Studies.
    20. Costanza Naguib & Patrick Gagliardini, 2023. "A Semi-nonparametric Copula Model for Earnings Mobility," Diskussionsschriften dp2302, Universitaet Bern, Departement Volkswirtschaft.
    21. Yuya Sasaki & Takuya Ura, 2021. "Slow Movers in Panel Data," Papers 2110.12041, arXiv.org.
    22. repec:spo:wpecon:info:hdl:2441/75dbbb2hc596np6q8flqf6i79k is not listed on IDEAS
    23. repec:hal:wpspec:info:hdl:2441/75dbbb2hc596np6q8flqf6i79k is not listed on IDEAS
    24. Valentin Verdier, 2020. "Average treatment effects for stayers with correlated random coefficient models of panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 917-939, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    3. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    4. Jinyong Hahn & David W. Hughes & Guido Kuersteiner & Whitney K. Newey, 2024. "Efficient bias correction for cross‐section and panel data," Quantitative Economics, Econometric Society, vol. 15(3), pages 783-816, July.
    5. Martins, Luis F. & Gabriel, Vasco J., 2009. "New Keynesian Phillips Curves and potential identification failures: A Generalized Empirical Likelihood analysis," Journal of Macroeconomics, Elsevier, vol. 31(4), pages 561-571, December.
    6. Mikio Ito & Akihiko Noda, 2012. "The GEL estimates resolve the risk-free rate puzzle in Japan," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 365-374, March.
    7. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    8. Gabriel, Vasco J. & Levine, Paul & Spencer, Christopher, 2009. "How forward-looking is the Fed? Direct estimates from a 'Calvo-type' rule," Economics Letters, Elsevier, vol. 104(2), pages 92-95, August.
    9. Carrasco, Marine & Kotchoni, Rachidi, 2017. "Efficient Estimation Using The Characteristic Function," Econometric Theory, Cambridge University Press, vol. 33(2), pages 479-526, April.
    10. Vasco J. Gabriel & Luis F. Martins, 2010. "The Cost Channel Reconsidered: A Comment Using an Identification‐Robust Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(8), pages 1703-1712, December.
    11. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    12. Bravo, Francesco & Chu, Ba M. & Jacho-Chávez, David T., 2017. "Generalized empirical likelihood M testing for semiparametric models with time series data," Econometrics and Statistics, Elsevier, vol. 4(C), pages 18-30.
    13. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    14. Francesco Bravo & Ba M. Chu & David T. Jacho-Chávez, 2017. "Semiparametric estimation of moment condition models with weakly dependent data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 108-136, January.
    15. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    16. Paulo Parente & Richard J. Smith, 2024. "Implied probability kernel block bootstrap for time series moment condition models," CeMMAP working papers 08/24, Institute for Fiscal Studies.
    17. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    18. Alain Guay & Florian Pelgrin, 2007. "Using Implied Probabilities to Improve Estimation with Unconditional Moment Restrictions," Cahiers de recherche 0747, CIRPEE.
    19. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    20. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.

    More about this item

    Keywords

    Correlated Random Coefficient Model; Panel Data; Instrumental Variables; GMM; Fixed Effects; Bias; Cigarette demand;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
    • J51 - Labor and Demographic Economics - - Labor-Management Relations, Trade Unions, and Collective Bargaining - - - Trade Unions: Objectives, Structure, and Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2010-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Program Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/decbuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.