IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v40y2024i1p60-97_3.html

Inference On A Distribution From Noisy Draws

Author

Listed:
  • Jochmans, Koen
  • Weidner, Martin

Abstract

We consider a situation where the distribution of a random variable is being estimated by the empirical distribution of noisy measurements of that variable. This is common practice in, for example, teacher value-added models and other fixed-effect models for panel data. We use an asymptotic embedding where the noise shrinks with the sample size to calculate the leading bias in the empirical distribution arising from the presence of noise. The leading bias in the empirical quantile function is equally obtained. These calculations are new in the literature, where only results on smooth functionals such as the mean and variance have been derived. We provide both analytical and jackknife corrections that recenter the limit distribution and yield confidence intervals with correct coverage in large samples. Our approach can be connected to corrections for selection bias and shrinkage estimation and is to be contrasted with deconvolution. Simulation results confirm the much-improved sampling behavior of the corrected estimators. An empirical illustration on heterogeneity in deviations from the law of one price is equally provided.

Suggested Citation

  • Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
  • Handle: RePEc:cup:etheor:v:40:y:2024:i:1:p:60-97_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466622000378/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    2. Ryo Okui & Takahide Yanagi, 2020. "Kernel estimation for panel data with heterogeneous dynamics," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 156-175.
    3. Gobillon, Laurent & Magnac, Thierry & Roux, Sébastien, 2022. "Lifecycle Wages and Human Capital Investments: Selection and Missing Data," TSE Working Papers 22-1299, Toulouse School of Economics (TSE).
    4. Kutta, Tim & Dette, Holger, 2024. "Validating approximate slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 246(1).
    5. St'ephane Bonhomme & Martin Weidner, 2019. "Posterior Average Effects," Papers 1906.06360, arXiv.org, revised Sep 2021.
    6. Magnac, Thierry & Roux, Sébastien, 2021. "Heterogeneity and wage inequalities over the life cycle," European Economic Review, Elsevier, vol. 134(C).
    7. Laurent Barras & Patrick Gagliardini & Olivier Scaillet, 2022. "Skill, Scale, and Value Creation in the Mutual Fund Industry," Journal of Finance, American Finance Association, vol. 77(1), pages 601-638, February.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:40:y:2024:i:1:p:60-97_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.