IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v246y2024i1s0304407624002495.html
   My bibliography  Save this article

Validating approximate slope homogeneity in large panels

Author

Listed:
  • Kutta, Tim
  • Dette, Holger

Abstract

In this paper, we introduce new inference methods for slope homogeneity in large regression panels. While most existing tests are developed for the hypothesis of slope homogeneity (equality of all individual slopes), we propose to test the more realistic relaxation of approximate slope homogeneity (similarity of all slopes). We present new test statistics for dense and sparse alternatives to approximate homogeneity. In the dense setting, the main focus of this paper, we develop statistics that converge to pivotal limits even under simultaneous temporal and intersectional dependence. We also demonstrate uniform consistency of these statistics against large classes of local alternatives. As a complementary diagnostic tool, we propose tests against sparse alternatives that are sensitive to excessive heterogeneity in a minority of slopes. Such tests can play an important role in the analysis of populations with diverse but small subgroups. A simulation study and a data example underline the usefulness of our approach.

Suggested Citation

  • Kutta, Tim & Dette, Holger, 2024. "Validating approximate slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 246(1).
  • Handle: RePEc:eee:econom:v:246:y:2024:i:1:s0304407624002495
    DOI: 10.1016/j.jeconom.2024.105898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624002495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Large intersections; Panel data; Self-normalization; Slope homogeneity;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:246:y:2024:i:1:s0304407624002495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.