IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v6y2003i1p217-259.html
   My bibliography  Save this article

Dynamic panel estimation and homogeneity testing under cross section dependence *

Author

Listed:
  • Peter C. B. Phillips
  • Donggyu Sul

Abstract

This paper deals with cross section dependence, homogeneity restrictions and small sample bias issues in dynamic panel regressions. To address the bias problem we develop a panel approach to median unbiased estimation that takes account of cross section dependence. The estimators given here considerably reduce the effects of bias and gain precision from estimating cross section error correlation. This paper also develops an asymptotic theory for tests of coefficient homogeneity under cross section dependence, and proposes a modified Hausman test to test for the presence of homogeneous unit roots. An orthogonalization procedure, based on iterated method of moments estimation, is developed to remove cross section dependence and permit the use of conventional and meta unit root tests with panel data. Some simulations investigating the finite sample performance of the estimation and test procedures are reported. Copyright Royal Economic Society, 2003

Suggested Citation

  • Peter C. B. Phillips & Donggyu Sul, 2003. "Dynamic panel estimation and homogeneity testing under cross section dependence *," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 217-259, June.
  • Handle: RePEc:ect:emjrnl:v:6:y:2003:i:1:p:217-259
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/1368-423X.00108
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Changli & Ter svirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(04), pages 868-885, August.
    2. Tse, Yiuman & Booth, G. Geoffrey, 1996. "Common volatility and volatility spillovers between U.S. and Eurodollar interest rates: Evidence from the futures market," Journal of Economics and Business, Elsevier, vol. 48(3), pages 299-312, August.
    3. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    4. Fiorentini, Gabriele & Sentana, Enrique, 1998. "Conditional Means of Time Series Processes and Time Series Processes for Conditional Means," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1101-1118, November.
    5. Jung-Hee Lee & B. Wade Brorsen, 1997. "A non-nested test of GARCH vs. EGARCH models," Applied Economics Letters, Taylor & Francis Journals, vol. 4(12), pages 765-768.
    6. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    8. Kim, Dongcheol & Kon, Stanley J, 1994. "Alternative Models for the Conditional Heteroscedasticity of Stock Returns," The Journal of Business, University of Chicago Press, vol. 67(4), pages 563-598, October.
    9. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
    10. Tse, Yiuman, 1998. "International transmission of information: evidence from the Euroyen and Eurodollar futures markets," Journal of International Money and Finance, Elsevier, vol. 17(6), pages 909-929, December.
    11. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    12. Koutmos, Gregory & Booth, G Geoffrey, 1995. "Asymmetric volatility transmission in international stock markets," Journal of International Money and Finance, Elsevier, vol. 14(6), pages 747-762, December.
    13. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    14. Menelaos Karanasos, "undated". "Prediction in ARMA models with GARCH in Mean Effects," Discussion Papers 99/11, Department of Economics, University of York.
    15. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, pages 267-290.
    16. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    17. Lobo, Bento J. & Tufte, David, 1998. "Exchange Rate Volatility: Does Politics Matter?," Journal of Macroeconomics, Elsevier, vol. 20(2), pages 351-365, April.
    18. Brunner, Allan D & Simon, David P, 1996. "Excess Returns and Risk at the Long End of the Treasury Market: An EGARCH-M Approach," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(3), pages 443-457, Fall.
    19. Karim Abadir, 1999. "An introduction to hypergeometric functions for economists," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 287-330.
    20. Booth, G. Geoffrey & Martikainen, Teppo & Tse, Yiuman, 1997. "Price and volatility spillovers in Scandinavian stock markets," Journal of Banking & Finance, Elsevier, vol. 21(6), pages 811-823, June.
    21. Antonis Demos, 2002. "Moments and dynamic structure of a time-varying parameter stochastic volatility in mean model," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 345-357, June.
    22. Kim, Suk-Joong & Sheen, Jeffrey, 2000. "International linkages and macroeconomic news effects on interest rate volatility -- Australia and the US," Pacific-Basin Finance Journal, Elsevier, pages 85-113.
    23. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    24. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    25. Stilianos Fountas & Menelaos Karanasos & Marika Karanassou, "undated". "A GARCH Model of Inflation and Inflation Uncertainty with Simultaneous Feedback," Discussion Papers 00/24, Department of Economics, University of York.
    26. St. Pierre, Eileen F., 1998. "Estimating EGARCH-M models: Science or art?," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(2), pages 167-180.
    27. Hagerud, Gustaf E., 1997. "Modeling Nordic Stock Returns with Asymmetric GARCH models," SSE/EFI Working Paper Series in Economics and Finance 164, Stockholm School of Economics.
    28. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    29. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    30. Karanasos, Menelaos, 1999. "The second moment and the autocovariance function of the squared errors of the GARCH model," Journal of Econometrics, Elsevier, vol. 90(1), pages 63-76, May.
    31. Manolis G. Kavussanos & Amir H. Alizadeh-M, 2002. "The Expectations Hypothesis of the Term Structure and Risk Premiums in Dry Bulk Shipping Freight Markets," Journal of Transport Economics and Policy, University of Bath, vol. 36(2), pages 267-304, May.
    32. Menelaos Karanasos & J. Kim, "undated". "Alternative GARCH in Mean Models: An Application to the Korean Stock Market," Discussion Papers 00/25, Department of Economics, University of York.
    33. Wilfredo Palma & Mauricio Zevallos, 2004. "Analysis of the correlation structure of square time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 529-550, July.
    34. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    35. Hu, Michael Y. & Jiang, Christine X. & Tsoukalas, Christos, 1997. "The European exchange rates before and after the establishment of the European Monetary System," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(3), pages 235-253, October.
    36. Joe Appiah-Kusi & Gioia M Pescetto, 1998. "Volatility and Volatility Spill-overs in Emerging Markets: The case of the African Stock Markets," Ekonomia, Cyprus Economic Society and University of Cyprus, vol. 2(2), pages 171-185, Winter.
    37. C. Hafner, 1997. "Estimating High Frequency Foreign Exchange Rate Volatility with Nonparametric ARCH Models," SFB 373 Discussion Papers 1997,18, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    38. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:6:y:2003:i:1:p:217-259. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.