IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt5h9259mb.html
   My bibliography  Save this paper

Banded and Tapered Estimates for Autocovariance Matrices and the Linear Process Bootstrap

Author

Listed:
  • McMurry, Timothy L
  • Politis, D N

Abstract

We address the problem of estimating the autocovariance matrix of a stationary process. Under short range dependence assumptions, convergence rates are established for a gradually tapered version of the sample autocovariance matrix and for its inverse. The proposed estimator is formed by leaving the main diagonals of the sample autocovariance matrix intact while gradually down-weighting o�-diagonal entries towards zero. In addition we show the same convergence rates hold for a positive de�nite version of the estimator, and we introduce a new approach for selecting the banding parameter. The new matrix estimator is shown to perform well theoretically and in simulation studies. As an application we introduce a new resampling scheme for stationary processes termed the linear process bootstrap (LPB). The LPB is shown to be asymptotically valid for the sample mean and related statistics. The e�ectiveness of the proposed methods are demonstrated in a simulation study.

Suggested Citation

  • McMurry, Timothy L & Politis, D N, 2010. "Banded and Tapered Estimates for Autocovariance Matrices and the Linear Process Bootstrap," University of California at San Diego, Economics Working Paper Series qt5h9259mb, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt5h9259mb
    as

    Download full text from publisher

    File URL: http://www.escholarship.org/uc/item/5h9259mb.pdf;origin=repeccitec
    Download Restriction: no

    References listed on IDEAS

    as
    1. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hendry, David F. & Martinez, Andrew B., 2017. "Evaluating multi-step system forecasts with relatively few forecast-error observations," International Journal of Forecasting, Elsevier, vol. 33(2), pages 359-372.
    2. Tommaso Proietti & Alessandro Giovannelli, 1705. "A Durbin-Levinson Regularized Estimator of High Dimensional Autocovariance Matrices," CREATES Research Papers 2017-20, Department of Economics and Business Economics, Aarhus University.
    3. Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
    4. Cheng, Tzu-Chang F. & Ing, Ching-Kang & Yu, Shu-Hui, 2015. "Toward optimal model averaging in regression models with time series errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 321-334.
    5. Ryan Janicki & Tucker S. McElroy, 2016. "Hermite expansion and estimation of monotonic transformations of Gaussian data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 207-234, March.
    6. Politis, Dimitris, 2014. "High-dimensional autocovariance matrices and optimal linear prediction," University of California at San Diego, Economics Working Paper Series qt3k58p0xr, Department of Economics, UC San Diego.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt5h9259mb. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: http://edirc.repec.org/data/deucsus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.