IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v23y2004i1p53-70.html
   My bibliography  Save this article

Automatic Block-Length Selection for the Dependent Bootstrap

Author

Listed:
  • Dimitris Politis
  • Halbert White

Abstract

We review the different block bootstrap methods for time series, and present them in a unified framework. We then revisit a recent result of Lahiri [Lahiri, S. N. (1999b). Theoretical comparisons of block bootstrap methods, Ann. Statist. 27:386-404] comparing the different methods and give a corrected bound on their asymptotic relative efficiency; we also introduce a new notion of finite-sample “attainable” relative efficiency. Finally, based on the notion of spectral estimation via the flat-top lag-windows of Politis and Romano [Politis, D. N., Romano, J. P. (1995). Bias-corrected nonparametric spectral estimation. J. Time Series Anal. 16:67-103], we propose practically useful estimators of the optimal block size for the aforementioned block bootstrap methods. Our estimators are characterized by the fastest possible rate of convergence which is adaptive on the strength of the correlation of the time series as measured by the correlogram.

Suggested Citation

  • Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
  • Handle: RePEc:taf:emetrv:v:23:y:2004:i:1:p:53-70
    DOI: 10.1081/ETC-120028836
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1081/ETC-120028836
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:23:y:2004:i:1:p:53-70. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.