IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v86y2019i5p1867-1900..html

Inference on Causal and Structural Parameters using Many Moment Inequalities

Author

Listed:
  • Victor Chernozhukov
  • Denis Chetverikov
  • Kengo Kato
  • Aureo de Paula

Abstract

This article considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by $p$, is possibly much larger than the sample size $n$. There is a variety of economic applications where solving this problem allows to carry out inference on causal and structural parameters; a notable example is the market structure model of Ciliberto and Tamer (2009) where $p=2^{m+1}$ with $m$ being the number of firms that could possibly enter the market. We consider the test statistic given by the maximum of $p$ Studentized (or $t$-type) inequality-specific statistics, and analyse various ways to compute critical values for the test statistic. Specifically, we consider critical values based upon (1) the union bound combined with a moderate deviation inequality for self-normalized sums, (2) the multiplier and empirical bootstraps, and (3) two-step and three-step variants of (1) and (2) by incorporating the selection of uninformative inequalities that are far from being binding and a novel selection of weakly informative inequalities that are potentially binding but do not provide first-order information. We prove validity of these methods, showing that under mild conditions, they lead to tests with the error in size decreasing polynomially in $n$ while allowing for $p$ being much larger than $n$; indeed $p$ can be of order $\exp (n^{c})$ for some $c > 0$. Importantly, all these results hold without any restriction on the correlation structure between $p$ Studentized statistics, and also hold uniformly with respect to suitably large classes of underlying distributions. Moreover, in the online supplement, we show validity of a test based on the block multiplier bootstrap in the case of dependent data under some general mixing conditions.

Suggested Citation

  • Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Aureo de Paula, 2019. "Inference on Causal and Structural Parameters using Many Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(5), pages 1867-1900.
  • Handle: RePEc:oup:restud:v:86:y:2019:i:5:p:1867-1900.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdy065
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:86:y:2019:i:5:p:1867-1900.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.