IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.06360.html
   My bibliography  Save this paper

Posterior Average Effects

Author

Listed:
  • St'ephane Bonhomme
  • Martin Weidner

Abstract

Economists are often interested in estimating averages with respect to distributions of unobservables, such as moments of individual fixed-effects, or average partial effects in discrete choice models. For such quantities, we propose and study posterior average effects (PAE), where the average is computed conditional on the sample, in the spirit of empirical Bayes and shrinkage methods. While the usefulness of shrinkage for prediction is well-understood, a justification of posterior conditioning to estimate population averages is currently lacking. We show that PAE have minimum worst-case specification error under various forms of misspecification of the parametric distribution of unobservables. In addition, we introduce a measure of informativeness of the posterior conditioning, which quantifies the worst-case specification error of PAE relative to parametric model-based estimators. As illustrations, we report PAE estimates of distributions of neighborhood effects in the US, and of permanent and transitory components in a model of income dynamics.

Suggested Citation

  • St'ephane Bonhomme & Martin Weidner, 2019. "Posterior Average Effects," Papers 1906.06360, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:1906.06360
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.06360
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    2. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    3. Pirmin Fessler & Kasy, Maximilian, 2017. "How to use economic theory to improve estimators," Working Paper 309271, Harvard University OpenScholar.
    4. Joshua D. Angrist & Peter D. Hull & Parag A. Pathak & Christopher R. Walters, 2017. "Leveraging Lotteries for School Value-Added: Testing and Estimation," The Quarterly Journal of Economics, Oxford University Press, vol. 132(2), pages 871-919.
    5. Alberto Abadie & Kasy, Maximilian, 2017. "The risk of machine learning," Working Paper 383316, Harvard University OpenScholar.
    6. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    7. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    8. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    9. Thomas J. Kane & Douglas O. Staiger, 2008. "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," NBER Working Papers 14607, National Bureau of Economic Research, Inc.
    10. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    11. Ryo Okui & Takahide Yanagi, 2020. "Kernel estimation for panel data with heterogeneous dynamics [Econometric tools for analyzing market outcomes]," Econometrics Journal, Royal Economic Society, vol. 23(1), pages 156-175.
    12. Hall, Robert E & Mishkin, Frederic S, 1982. "The Sensitivity of Consumption to Transitory Income: Estimates from Panel Data on Households," Econometrica, Econometric Society, vol. 50(2), pages 461-481, March.
    13. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    14. Koen Jochmans & Martin Weidner, 2018. "Inference on a Distribution from Noisy Draws," Papers 1803.04991, arXiv.org, revised Sep 2019.
    15. Geweke, John & Keane, Michael, 2000. "An empirical analysis of earnings dynamics among men in the PSID: 1968-1989," Journal of Econometrics, Elsevier, vol. 96(2), pages 293-356, June.
    16. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Bonhomme & Martin Weidner, 2020. "Posterior average effects," CeMMAP working papers CWP49/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Manuel Arellano & Stephane Bonhomme, 2019. "Recovering Latent Variables by Matching," Papers 1912.13081, arXiv.org.
    3. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    4. St'ephane Bonhomme & Martin Weidner, 2018. "Minimizing Sensitivity to Model Misspecification," Papers 1807.02161, arXiv.org, revised Jun 2021.
    5. Manuel Arellano & Stéphane Bonhomme, 2020. "Recovering Latent Variables by Matching," CeMMAP working papers CWP2/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 491-533.
    7. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    8. Hinnerich, Björn Tyrefors & Vlachos, Jonas, 2017. "The impact of upper-secondary voucher school attendance on student achievement. Swedish evidence using external and internal evaluations," Labour Economics, Elsevier, vol. 47(C), pages 1-14.
    9. Iskhakov, Fedor & Keane, Michael, 2021. "Effects of taxes and safety net pensions on life-cycle labor supply, savings and human capital: The case of Australia," Journal of Econometrics, Elsevier, vol. 223(2), pages 401-432.
    10. Patrick Kline & Christopher Walters, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Papers 1907.06622, arXiv.org, revised Jul 2019.
    11. Joshua Angrist & Peter Hull & Parag Pathak & Christopher Walters, 2016. "Interpreting Tests of School VAM Validity," American Economic Review, American Economic Association, vol. 106(5), pages 388-392, May.
    12. L. Hospido, 2012. "Modelling heterogeneity and dynamics in the volatility of individual wages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 386-414, April.
    13. Antoine Deeb, 2021. "A Framework for Using Value-Added in Regressions," Papers 2109.01741, arXiv.org, revised Oct 2021.
    14. Manuel Arellano & Stéphane Bonhomme, 2017. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 471-496, September.
    15. Prati, Alberto, 2017. "Hedonic recall bias. Why you should not ask people how much they earn," Journal of Economic Behavior & Organization, Elsevier, vol. 143(C), pages 78-97.
    16. Mian Dai & Xun Tang, 2013. "Regulation and Capacity Competition in Health Care: Evidence from Dialysis Markets," PIER Working Paper Archive 13-057, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Shapiro, Matthew D., 1984. "The permanent income hypothesis and the real interest rate : Some evidence from panel data," Economics Letters, Elsevier, vol. 14(1), pages 93-100.
    18. Adam J. Kapor & Christopher A. Neilson & Seth D. Zimmerman, 2020. "Heterogeneous Beliefs and School Choice Mechanisms," American Economic Review, American Economic Association, vol. 110(5), pages 1274-1315, May.
    19. Koen Jochmans & Martin Weidner, 2018. "Inference on a Distribution from Noisy Draws," Papers 1803.04991, arXiv.org, revised Sep 2019.
    20. Andrew McEachin & Allison Atteberry, 2017. "The Impact of Summer Learning Loss on Measures of School Performance," Education Finance and Policy, MIT Press, vol. 12(4), pages 468-491, Fall.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.06360. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.