IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.02161.html
   My bibliography  Save this paper

Minimizing Sensitivity to Model Misspecification

Author

Listed:
  • St'ephane Bonhomme
  • Martin Weidner

Abstract

We propose a framework for estimation and inference when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We construct estimators whose mean squared error is minimax in a neighborhood of the reference model, based on one-step adjustments. In addition, we provide confidence intervals that contain the true parameter under local misspecification. As a tool to interpret the degree of misspecification, we map it to the local power of a specification test of the reference model. Our approach allows for systematic sensitivity analysis when the parameter of interest may be partially or irregularly identified. As illustrations, we study three applications: an empirical analysis of the impact of conditional cash transfers in Mexico where misspecification stems from the presence of stigma effects of the program, a cross-sectional binary choice model where the error distribution is misspecified, and a dynamic panel data binary choice model where the number of time periods is small and the distribution of individual effects is misspecified.

Suggested Citation

  • St'ephane Bonhomme & Martin Weidner, 2018. "Minimizing Sensitivity to Model Misspecification," Papers 1807.02161, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:1807.02161
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.02161
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chamberlain, Gary, 2000. "Econometrics and decision theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 255-283, April.
    2. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    3. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    4. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    5. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    6. Fermanian, Jean-David & Salanié, Bernard, 2004. "A Nonparametric Simulated Maximum Likelihood Estimation Method," Econometric Theory, Cambridge University Press, vol. 20(4), pages 701-734, August.
    7. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    8. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    9. Jinyong Hahn & Jerry Hausman, 2010. "Estimation with Valid and Invalid Instruments," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 25-57, National Bureau of Economic Research, Inc.
    10. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2020. "On the Informativeness of Descriptive Statistics for Structural Estimates," Econometrica, Econometric Society, vol. 88(6), pages 2231-2258, November.
    11. Susanne M. Schennach, 2014. "Entropic Latent Variable Integration via Simulation," Econometrica, Econometric Society, vol. 82(1), pages 345-385, January.
    12. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871532, June.
    13. Hansen, Bruce E., 2016. "Efficient shrinkage in parametric models," Journal of Econometrics, Elsevier, vol. 190(1), pages 115-132.
    14. Bruce E. Hansen, 2017. "Stein-like 2SLS estimator," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 840-852, October.
    15. Guggenberger, Patrik, 2012. "On The Asymptotic Size Distortion Of Tests When Instruments Locally Violate The Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 28(2), pages 387-421, April.
    16. Orazio P. Attanasio & Costas Meghir & Ana Santiago, 2012. "Education Choices in Mexico: Using a Structural Model and a Randomized Experiment to Evaluate PROGRESA," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(1), pages 37-66.
    17. Pirmin Fessler & Kasy, Maximilian, 2017. "How to use economic theory to improve estimators," Working Paper 309271, Harvard University OpenScholar.
    18. Kenneth I. Wolpin & Petra E. Todd, 2006. "Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility," American Economic Review, American Economic Association, vol. 96(5), pages 1384-1417, December.
    19. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    20. Wolpin, Kenneth I., 2013. "The Limits of Inference without Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262019086, December.
    21. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    22. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    23. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    24. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    25. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    26. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692106, June.
    27. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, June.
    28. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    29. Xiaohong Chen & Elie Tamer & Alexander Torgovitsky, 2011. "Sensitivity Analysis in Semiparametric Likelihood Models," Cowles Foundation Discussion Papers 1836, Cowles Foundation for Research in Economics, Yale University.
    30. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692090, June.
    31. Petra E. Todd & Kenneth I. Wolpin, 2008. "Ex Ante Evaluation of Social Programs," Annals of Economics and Statistics, GENES, issue 91-92, pages 263-291.
    32. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    33. Joshua D. Angrist & Peter D. Hull & Parag A. Pathak & Christopher R. Walters, 2017. "Leveraging Lotteries for School Value-Added: Testing and Estimation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 871-919.
    34. repec:adr:anecst:y:2008:i:91-92:p:13 is not listed on IDEAS
    35. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    36. Maasoumi, Esfandiar, 1978. "A Modified Stein-like Estimator for the Reduced Form Coefficients of Simultaneous Equations," Econometrica, Econometric Society, vol. 46(3), pages 695-703, May.
    37. Federico A. Bugni & Ivan A. Canay & Patrik Guggenberger, 2012. "Distortions of Asymptotic Confidence Size in Locally Misspecified Moment Inequality Models," Econometrica, Econometric Society, vol. 80(4), pages 1741-1768, July.
    38. repec:adr:anecst:y:2005:i:79-80:p:02 is not listed on IDEAS
    39. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    40. Gary Chamberlain, 2010. "Binary Response Models for Panel Data: Identification and Information," Econometrica, Econometric Society, vol. 78(1), pages 159-168, January.
    41. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871549, June.
    42. Leamer, Edward E, 1985. "Sensitivity Analyses Would Help," American Economic Review, American Economic Association, vol. 75(3), pages 308-313, June.
    43. Manuel Arellano & Stèphane Bonhomme, 2011. "Nonlinear Panel Data Analysis," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 395-424, September.
    44. Claeskens G. & Hjort N.L., 2003. "The Focused Information Criterion," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 900-916, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    3. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    4. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    5. Williams, Benjamin, 2020. "Nonparametric identification of discrete choice models with lagged dependent variables," Journal of Econometrics, Elsevier, vol. 215(1), pages 286-304.
    6. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    7. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    8. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    9. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    10. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    11. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    12. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    13. Antoine, Bertille & Dovonon, Prosper, 2021. "Robust estimation with exponentially tilted Hellinger distance," Journal of Econometrics, Elsevier, vol. 224(2), pages 330-344.
    14. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    15. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    16. Lee, Yoonseok & Phillips, Peter C.B., 2015. "Model selection in the presence of incidental parameters," Journal of Econometrics, Elsevier, vol. 188(2), pages 474-489.
    17. repec:spo:wpecon:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    18. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    19. repec:hal:wpspec:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    20. Ayden Higgins & Koen Jochmans, 2024. "Bootstrap Inference for Fixed‐Effect Models," Econometrica, Econometric Society, vol. 92(2), pages 411-427, March.
    21. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    22. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2020. "On the Informativeness of Descriptive Statistics for Structural Estimates," Econometrica, Econometric Society, vol. 88(6), pages 2231-2258, November.
    23. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    24. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    25. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    26. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    27. Stéphane Bonhomme & Martin Weidner, 2019. "Posterior average effects," CeMMAP working papers CWP43/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    28. Lavergne, Pascal, 2015. "Assessing the Approximate Validity of Moment Restrictions," TSE Working Papers 15-562, Toulouse School of Economics (TSE), revised May 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.02161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.