IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Higher-order properties of approximate estimators

  • Dennis Kristensen


    (Institute for Fiscal Studies)

  • Bernard Salanie

    (Institute for Fiscal Studies)

Many modern estimation methods in econometrics approximate an objective function, for instance, through simulation or discretisation. These approximations typically affect both bias and variance of the resulting estimator. We provide a higher-order expansion of such 'approximate' estimators that takes into account the errors due to the use of approximations. This expansion allows us to establish general conditions under which the approximate estimator is first-order equivalent to the exact estimator. Moreover, we use the expansion to propose adjustments of the approximate estimator that remove its first-order bias and adjust its standard errors. These adjustments apply to a broad class of approximate estimators that includes all known simulation-based procedures. We also propose another approach to reduce the impact of approximations, based on a Newton-Raphson adjustment. A Monte Carlo simulation on the mixed logit model shows that our proposed adjustments can yield spectacular improvements at a low computational cost.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP45/13.

in new window

Date of creation: 19 Sep 2013
Date of revision:
Handle: RePEc:ifs:cemmap:45/13
Contact details of provider: Postal:
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page:

More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Valentina Corradi & Norman R. Swanson, 2003. "Evaluation of Dynamic Stochastic General Equilibrium Models Based on Distributional Comparison of Simulated and Historical Data," Departmental Working Papers 200320, Rutgers University, Department of Economics.
  2. Geert Dhaene & Koen Jochmans, 2014. "Split-Panel Jackknife Estimation of Fixed-Effect Models," Sciences Po Economics Discussion Papers 2014-03, Sciences Po Departement of Economics.
  3. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-90, July.
  4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Manuel Santos, 2005. "Convergence Properties of the Likelihood of Computed Dynamic Models," Levine's Bibliography 122247000000000822, UCLA Department of Economics.
  5. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-67, July.
  6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, November.
  7. Tauchen, George & Hussey, Robert, 1991. "Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models," Econometrica, Econometric Society, vol. 59(2), pages 371-96, March.
  8. Donald W.K. Andrews, 1999. "Higher-Order Improvements of a Computationally Attractive-Step Bootstrap for Extremum Estimators," Cowles Foundation Discussion Papers 1230, Cowles Foundation for Research in Economics, Yale University.
  9. Rust, J., 1994. "Using Randomization to Break the Curse of Dimensionality," Working papers 9429, Wisconsin Madison - Social Systems.
  10. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 437-483, June.
  11. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-52, July.
  12. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
  13. Lee, Lung-fei, 1999. "Statistical Inference With Simulated Likelihood Functions," Econometric Theory, Cambridge University Press, vol. 15(03), pages 337-360, June.
  14. Kristensen, Dennis & Rahbek, Anders, 2005. "ASYMPTOTICS OF THE QMLE FOR A CLASS OF ARCH(q) MODELS," Econometric Theory, Cambridge University Press, vol. 21(05), pages 946-961, October.
  15. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, 07.
  16. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, 09.
  17. Filippo Altissimo & Antonio Mele, 2009. "Simulated Non-Parametric Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 76(2), pages 413-450.
  18. Michael Creel & Dennis Kristensen, 2009. "Estimation of Dynamic Latent Variable Models Using Simulated Nonparametric Moments," UFAE and IAE Working Papers 792.09, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  19. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, 09.
  20. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of semiparametric models when the criterion function is not smooth," LSE Research Online Documents on Economics 2167, London School of Economics and Political Science, LSE Library.
  21. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
  22. Jesús Fernández-Villaverde & Juan Francisco Rubio-Ramírez, 2004. "Estimating dynamic equilibrium economies: linear versus nonlinear likelihood," FRB Atlanta Working Paper 2004-3, Federal Reserve Bank of Atlanta.
  23. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  24. Fermanian, Jean-David & Salani , Bernard, 2004. "A Nonparametric Simulated Maximum Likelihood Estimation Method," Econometric Theory, Cambridge University Press, vol. 20(04), pages 701-734, August.
  25. Laroque, Guy & Salanie, Bernard, 1989. "Estimation of Multi-market Fix-Price Models: An Application of Pseudo Maximum Likelihood Methods," Econometrica, Econometric Society, vol. 57(4), pages 831-60, July.
  26. Lee, Lung-fei, 2001. "Interpolation, Quadrature, And Stochastic Integration," Econometric Theory, Cambridge University Press, vol. 17(05), pages 933-961, October.
  27. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
  28. repec:crs:wpaper:9315 is not listed on IDEAS
  29. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(06), pages 995-1045, December.
  30. Daniel Ackerberg & John Geweke & Jinyong Hahn, 2009. "Comments on "Convergence Properties of the Likelihood of Computed Dynamic Models"," Econometrica, Econometric Society, vol. 77(6), pages 2009-2017, November.
  31. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:45/13. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.