IDEAS home Printed from https://ideas.repec.org/p/fip/fedawp/2004-3.html
   My bibliography  Save this paper

Estimating dynamic equilibrium economies: linear versus nonlinear likelihood

Author

Listed:
  • Jesús Fernández-Villaverde
  • Juan F. Rubio-Ramirez

Abstract

This paper compares two methods for undertaking likelihood-based inference in dynamic equilibrium economies: a sequential Monte Carlo filter proposed by Fernndez-Villaverde and Rubio-Ramrez (2004) and the Kalman filter. The sequential Monte Carlo filter exploits the nonlinear structure of the economy and evaluates the likelihood function of the model by simulation methods. The Kalman filter estimates a linearization of the economy around the steady state. The authors report two main results. First, both for simulated and for real data, the sequential Monte Carlo filter delivers a substantially better fit of the model to the data as measured by the marginal likelihood. This is true even for a nearly linear case. Second, the differences in terms of point estimates, even if relatively small in absolute values, have important effects on the moments of the model. The authors conclude that the nonlinear filter is a superior procedure for taking models to the data.

Suggested Citation

  • Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2004. "Estimating dynamic equilibrium economies: linear versus nonlinear likelihood," FRB Atlanta Working Paper 2004-3, Federal Reserve Bank of Atlanta.
  • Handle: RePEc:fip:fedawp:2004-3
    as

    Download full text from publisher

    File URL: https://www.frbatlanta.org/-/media/documents/research/publications/wp/2004/wp0403.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
    2. Anderson, Evan W. & McGrattan, Ellen R. & Hansen, Lars Peter & Sargent, Thomas J., 1996. "Mechanics of forming and estimating dynamic linear economies," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 4, pages 171-252, Elsevier.
    3. Kim, Jinill, 2000. "Constructing and estimating a realistic optimizing model of monetary policy," Journal of Monetary Economics, Elsevier, vol. 45(2), pages 329-359, April.
    4. Ali Dib, 2003. "An estimated Canadian DSGE model with nominal and real rigidities," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 949-972, November.
    5. Lubik, Thomas A. & Schorfheide, Frank, 2007. "Do central banks respond to exchange rate movements? A structural investigation," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1069-1087, May.
    6. Chang‐Jin Kim & James Morley & Jeremy Piger, 2005. "Nonlinearity and the permanent effects of recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 291-309.
    7. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    8. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    9. Bouakez, Hafedh & Cardia, Emanuela & Ruge-Murcia, Francisco J., 2005. "Habit formation and the persistence of monetary shocks," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1073-1088, September.
    10. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Manuel S. Santos, 2006. "Convergence Properties of the Likelihood of Computed Dynamic Models," Econometrica, Econometric Society, vol. 74(1), pages 93-119, January.
    11. Ellen R. McGrattan & Edward C. Prescott, 2000. "Is the stock market overvalued?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 24(Fall), pages 20-40.
    12. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    13. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    14. Otrok, Christopher, 2001. "On measuring the welfare cost of business cycles," Journal of Monetary Economics, Elsevier, vol. 47(1), pages 61-92, February.
    15. Kevin Moran & Veronika Dolar, 2002. "Estimated DGE Models and Forecasting Accuracy: A Preliminary Investigation with Canadian Data," Staff Working Papers 02-18, Bank of Canada.
    16. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    17. Christopher A. Sims & Jinill Kim & Sunghyun Kim, 2003. "Calculating and Using Second Order Accurate Solution of Discrete Time Dynamic Equilibrium Models," Computing in Economics and Finance 2003 162, Society for Computational Economics.
    18. Hall, George J., 1996. "Overtime, effort, and the propagation of business cycle shocks," Journal of Monetary Economics, Elsevier, vol. 38(1), pages 139-160, August.
    19. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    20. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    21. repec:cup:etheor:v:10:y:1994:i:3-4:p:609-32 is not listed on IDEAS
    22. Lars Ljungqvist & Thomas J. Sargent, 2004. "Recursive Macroeconomic Theory, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026212274x, April.
    23. Peter N. Ireland, 2004. "Technology Shocks in the New Keynesian Model," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 923-936, November.
    24. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2004. "Estimating nonlinear dynamic equilibrium economies: a likelihood approach," FRB Atlanta Working Paper 2004-1, Federal Reserve Bank of Atlanta.
    25. McGrattan, Ellen R & Rogerson, Richard & Wright, Randall, 1997. "An Equilibrium Model of the Business Cycle with Household Production and Fiscal Policy," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(2), pages 267-290, May.
    26. Jinill Kim & Sunghyun Kim & Ernst Schaumburg & Christopher A. Sims, 2003. "Calculating and Using Second Order Accurate Solutions of Discrete Time," Levine's Bibliography 666156000000000284, UCLA Department of Economics.
    27. Rabanal, Pau & Rubio-Ramirez, Juan F., 2005. "Comparing New Keynesian models of the business cycle: A Bayesian approach," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1151-1166, September.
    28. Christopher A. Sims & Tao Zha, 2002. "Macroeconomic switching," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    29. Ellen R. McGrattan, 1998. "Application of weighted residual methods to dynamic economic models," Staff Report 232, Federal Reserve Bank of Minneapolis.
    30. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
    31. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    32. Fernandez-Villaverde, Jesus & Francisco Rubio-Ramirez, Juan, 2004. "Comparing dynamic equilibrium models to data: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 123(1), pages 153-187, November.
    33. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Manuel S. Santos, 2006. "Convergence Properties of the Likelihood of Computed Dynamic Models," Econometrica, Econometric Society, vol. 74(1), pages 93-119, January.
    2. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    3. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    5. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2004. "Estimating nonlinear dynamic equilibrium economies: a likelihood approach," FRB Atlanta Working Paper 2004-1, Federal Reserve Bank of Atlanta.
    6. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    7. Pablo A. Guerrón-Quintana & James M. Nason, 2013. "Bayesian estimation of DSGE models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 21, pages 486-512, Edward Elgar Publishing.
    8. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    9. Malley, Jim & Woitek, Ulrich, 2010. "Technology shocks and aggregate fluctuations in an estimated hybrid RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1214-1232, July.
    10. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    11. Ruge-Murcia, Francisco J., 2007. "Methods to estimate dynamic stochastic general equilibrium models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2599-2636, August.
    12. Wing Leong Teo, 2009. "Estimated Dynamic Stochastic General Equilibrium Model Of The Taiwanese Economy," Pacific Economic Review, Wiley Blackwell, vol. 14(2), pages 194-231, May.
    13. Giovanni Di Bartolomeo & Lorenza Rossi & Massimiliano Tancioni, 2011. "Monetary policy, rule-of-thumb consumers and external habits: a G7 comparison," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2721-2738.
    14. Gorodnichenko, Yuriy & Ng, Serena, 2010. "Estimation of DSGE models when the data are persistent," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 325-340, April.
    15. Welz, Peter, 2006. "Assessing predetermined expectations in the standard sticky-price model: a Bayesian approach," Working Paper Series 621, European Central Bank.
    16. Ricardo Marto, 2014. "Assessing the Impacts of Non-Ricardian Households in an Estimated New Keynesian DSGE Model," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(IV), pages 353-398, December.
    17. Tovar, Camilo Ernesto, 2009. "DSGE Models and Central Banks," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-31.
    18. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    19. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    20. Rabanal, Pau, 2007. "Does inflation increase after a monetary policy tightening? Answers based on an estimated DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 906-937, March.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:2004-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rob Sarwark (email available below). General contact details of provider: https://edirc.repec.org/data/frbatus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.