IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Estimating Macroeconomic Models: A Likelihood Approach

  • Jes�s Fern�ndez-Villaverde
  • Juan F. Rubio-Ram�rez

This paper shows how particle filtering facilitates likelihood-based inference in dynamic macroeconomic models. The economies can be non-linear and/or non-normal. We describe how to use the output from the particle filter to estimate the structural parameters of the model, those characterizing preferences and technology, and to compare different economies. Both tasks can be implemented from either a classical or a Bayesian perspective. We illustrate the technique by estimating a business cycle model with investment-specific technological change, preference shocks, and stochastic volatility. Copyright 2007, Wiley-Blackwell.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1111/j.1467-937X.2007.00437.x
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Oxford University Press in its journal The Review of Economic Studies.

Volume (Year): 74 (2007)
Issue (Month): 4 ()
Pages: 1059-1087

as
in new window

Handle: RePEc:oup:restud:v:74:y:2007:i:4:p:1059-1087
Contact details of provider:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christopher Otrok, 2000. "On Measuring the Welfare Cost of Business Cycles," Econometric Society World Congress 2000 Contributed Papers 1094, Econometric Society.
  2. James H. Stock & Mark W. Watson, 2002. "Has the Business Cycle Changed and Why?," NBER Working Papers 9127, National Bureau of Economic Research, Inc.
  3. repec:cup:etheor:v:10:y:1994:i:3-4:p:609-32 is not listed on IDEAS
  4. Tanizaki, Hisashi & Mariano, Roberto S, 1994. "Prediction, Filtering and Smoothing in Non-linear and Non-normal Cases Using Monte Carlo Integration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 163-79, April-Jun.
  5. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-41, June.
  6. Monfort, Alain, 1996. "A Reappraisal of Misspecified Econometric Models," Econometric Theory, Cambridge University Press, vol. 12(04), pages 597-619, October.
  7. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 2000. "The role of investment-specific technological change in the business cycle," European Economic Review, Elsevier, vol. 44(1), pages 91-115, January.
  8. S. B. Aruoba & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2005. "Comparing Solution Methods for Dynamic Equilibrium Economies," Levine's Bibliography 122247000000000855, UCLA Department of Economics.
  9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  10. Sims, Christopher A & Uhlig, Harald, 1991. "Understanding Unit Rooters: A Helicopter Tour," Econometrica, Econometric Society, vol. 59(6), pages 1591-99, November.
  11. Jesus Fernandez-Villaverde & Juan Rubio & Manuel Santos, 2005. "Convergence Properties of the Likelihood of Computed Dynamic Models," NBER Technical Working Papers 0315, National Bureau of Economic Research, Inc.
  12. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
  13. Jesús Fernández-Villaverde & Juan Francisco Rubio-Ramírez, 2004. "Estimating dynamic equilibrium economies: linear versus nonlinear likelihood," Working Paper 2004-3, Federal Reserve Bank of Atlanta.
  14. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, 09.
  15. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
  16. Lawrence J. Christiano & Martin Eichenbaum & Charles Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Proceedings, Federal Reserve Bank of San Francisco, issue Jun.
  17. Bernanke, Ben S. & Mihov, Ilian, 1995. "Measuring Monetary Policy," Economics Series 10, Institute for Advanced Studies.
  18. Watson, Mark W, 1993. "Measures of Fit for Calibrated Models," Journal of Political Economy, University of Chicago Press, vol. 101(6), pages 1011-41, December.
  19. Diebold, Francis X & Ohanian, Lee E & Berkowitz, Jeremy, 1998. "Dynamic Equilibrium Economies: A Framework for Comparing Models and Data," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 433-51, July.
  20. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  21. John H. Cochrane & Lars Peter Hansen, 1992. "Asset Pricing Explorations for Macroeconomics," NBER Working Papers 4088, National Bureau of Economic Research, Inc.
  22. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
  23. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-62, June.
  24. Harald Uhlig, 1997. "Bayesian Vector Autoregressions with Stochastic Volatility," Econometrica, Econometric Society, vol. 65(1), pages 59-74, January.
  25. Smets, Frank & Wouters, Raf, 2004. "Comparing shocks and frictions in US and euro area business cycles: a Bayesian DSGE approach," Working Paper Series 0391, European Central Bank.
  26. Sungbae An & Frank Schorfheide, 2006. "Bayesian analysis of DSGE models," Working Papers 06-5, Federal Reserve Bank of Philadelphia.
  27. Tauchen, George E. & Gallant, A. Ronald, 1995. "Which Moments to Match," Working Papers 95-20, Duke University, Department of Economics.
  28. Lee, Bong-Soo & Ingram, Beth Fisher, 1991. "Simulation estimation of time-series models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 197-205, February.
  29. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
  30. James H. Stock & Mark W. Watson, 2003. "Has the business cycle changed?," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 9-56.
  31. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
  32. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
  33. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
  34. Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
  35. Guido W Imbens, Phillip Johnson & Richard H Spady, . "Information theoretic approaches to inference in moment condition model," Economics Papers W12., Economics Group, Nuffield College, University of Oxford.
  36. Laroque, Guy & Salanie, Bernard, 1989. "Estimation of Multi-market Fix-Price Models: An Application of Pseudo Maximum Likelihood Methods," Econometrica, Econometric Society, vol. 57(4), pages 831-60, July.
  37. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
  38. Christopher A. Sims & Tao Zha, 2004. "Were there regime switches in U.S. monetary policy?," Working Paper 2004-14, Federal Reserve Bank of Atlanta.
  39. Laroque, Guy & Salanie, B, 1993. "Simulation-Based Estimation of Models with Lagged Latent Variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S119-33, Suppl. De.
  40. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
  41. Altug, Sumru, 1989. "Time-to-Build and Aggregate Fluctuations: Some New Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(4), pages 889-920, November.
  42. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  43. Carrasco, Marine & Florens, Jean-Pierre, 2002. "Simulation-Based Method of Moments and Efficiency," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 482-92, October.
  44. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  45. Ellen R. McGrattan, 1998. "Application of weighted residual methods to dynamic economic models," Staff Report 232, Federal Reserve Bank of Minneapolis.
  46. Chari, V V & Christiano, Lawrence J & Kehoe, Patrick J, 1994. "Optimal Fiscal Policy in a Business Cycle Model," Journal of Political Economy, University of Chicago Press, vol. 102(4), pages 617-52, August.
  47. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  48. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  49. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
  50. Fernandez-Villaverde, Jesus & Francisco Rubio-Ramirez, Juan, 2004. "Comparing dynamic equilibrium models to data: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 123(1), pages 153-187, November.
  51. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  52. Manuel S. Santos & Adrian Peralta-Alva, 2003. "Accuracy of Simulations for Stochastic Dynamic Models," Levine's Bibliography 666156000000000264, UCLA Department of Economics.
  53. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
  54. Michael K Pitt & Neil Shephard, . "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.
  55. Ellen R. McGrattan & Edward C. Prescott, 2001. "Is the Stock Market Overvalued?," NBER Working Papers 8077, National Bureau of Economic Research, Inc.
  56. Imbens, G.W. & Johnson, P. & Spady, R.H., 1995. "Information Theoretic Approaches to Inference in Movement Condition Models," Economics Papers 99, Economics Group, Nuffield College, University of Oxford.
  57. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
  58. Viktor Winschel, 2005. "Solving, Estimating and Selecting Nonlinear Dynamic Economic Models without the Curse of Dimensionality," GE, Growth, Math methods 0507014, EconWPA.
  59. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  60. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
  61. Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
  62. repec:fth:inseep:9315 is not listed on IDEAS
  63. Douglas Rivers & Quang Vuong, 2002. "Model selection tests for nonlinear dynamic models," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 1-39, June.
  64. Miranda, Mario J. & Rui, Xiongwen, 1997. "Maximum likelihood estimation of the nonlinear rational expectations asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1493-1510, June.
  65. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  66. Judd, Kenneth L. & Guu, Sy-Ming, 1997. "Asymptotic methods for aggregate growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1025-1042, June.
  67. Fermanian, Jean-David & Salani , Bernard, 2004. "A Nonparametric Simulated Maximum Likelihood Estimation Method," Econometric Theory, Cambridge University Press, vol. 20(04), pages 701-734, August.
  68. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-87, April.
  69. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
  70. Laroque, Guy & Salanie, Bernard, 1994. "Estimating the canonical disequilibrium model : Asymptotic theory and finite sample properties," Journal of Econometrics, Elsevier, vol. 62(2), pages 165-210, June.
  71. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S63-84, Suppl. De.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:74:y:2007:i:4:p:1059-1087. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.