IDEAS home Printed from https://ideas.repec.org/p/ifs/ifsewp/21-13.html
   My bibliography  Save this paper

Revisiting the solution of dynamic discrete choice models: time to bring back Keane and Wolpin (1994)?

Author

Listed:
  • Jack Britton

    (Institute for Fiscal Studies)

  • Ben Waltmann

    (Institute for Fiscal Studies and IFS)

Abstract

The ‘curse of dimensionality’ is a common problem in the estimation of dynamic models: as models get more complex, the computational cost of solving these models rises exponentially. Keane and Wolpin (1994) proposed a method for addressing this problem in finite-horizon dynamic discrete choice models by evaluating only a subset of state space points by Monte Carlo integration and interpolating the value of the remainder. This method was widely used in the late 1990s and 2000s but has rarely been used since, as it was found to be unreliable in some settings. In this paper, we develop an improved version of their method that relies on three amendments: systematic sampling, data-guided selection of state space points for Monte Carlo integration, and dispensing with polynomial interpolation when a multicollinearity problem is detected. With these improvements, the Keane and Wolpin (1994) method achieves excellent approximation performance even in a model with a large state space and substantial ex ante heterogeneity.

Suggested Citation

  • Jack Britton & Ben Waltmann, 2021. "Revisiting the solution of dynamic discrete choice models: time to bring back Keane and Wolpin (1994)?," IFS Working Papers W21/13, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:ifsewp:21/13
    as

    Download full text from publisher

    File URL: https://ifs.org.uk/uploads/WP202113-Revisiting-the-solution-of-dynamic-discrete-choice-models-time-to-bring-back-Keane-and-Wolpin.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philipp Eisenhauer & James J. Heckman & Stefano Mosso, 2015. "Estimation Of Dynamic Discrete Choice Models By Maximum Likelihood And The Simulated Method Of Moments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 331-357, May.
    2. Joseph G. Altonji & Anthony A. Smith Jr. & Ivan Vidangos, 2013. "Modeling Earnings Dynamics," Econometrica, Econometric Society, vol. 81(4), pages 1395-1454, July.
    3. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    4. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    5. Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018. "Generalized indirect inference for discrete choice models," Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
    6. Zvi Eckstein & Kenneth I. Wolpin, 1989. "Dynamic Labour Force Participation of Married Women and Endogenous Work Experience," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 56(3), pages 375-390.
    7. Geweke, John, 1996. "Monte carlo simulation and numerical integration," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 15, pages 731-800, Elsevier.
    8. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    9. Robert M. Sauer, 2015. "Does It Pay For Women To Volunteer?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 537-564, May.
    10. Keane, Michael P & Wolpin, Kenneth I, 1997. "The Career Decisions of Young Men," Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
    11. Meghan M. Skira, 2015. "Dynamic Wage And Employment Effects Of Elder Parent Care," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 63-93, February.
    12. Donna B. Gilleskie & David M. Blau, 2006. "Health insurance and retirement of married couples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(7), pages 935-953.
    13. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    14. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, July.
    15. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    16. Susumu Imai & Michael P. Keane, 2004. "Intertemporal Labor Supply and Human Capital Accumulation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 601-641, May.
    17. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    18. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    19. Meghan M. Skira, 2015. "Dynamic Wage And Employment Effects Of Elder Parent Care," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 63-93, February.
    20. Kenneth I. Wolpin & Petra E. Todd, 2006. "Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility," American Economic Review, American Economic Association, vol. 96(5), pages 1384-1417, December.
    21. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    22. Philipp Eisenhauer & James J. Heckman & Stefano Mosso, 2015. "Estimation Of Dynamic Discrete Choice Models By Maximum Likelihood And The Simulated Method Of Moments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 331-357, May.
    23. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    24. Jason Abaluck & Abi Adams-Prassl, 2021. "What do Consumers Consider Before They Choose? Identification from Asymmetric Demand Responses," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(3), pages 1611-1663.
    25. Melanie Morten, 2019. "Temporary Migration and Endogenous Risk Sharing in Village India," Journal of Political Economy, University of Chicago Press, vol. 127(1), pages 1-46.
    26. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    27. Philipp Eisenhauer, 2019. "The approximate solution of finite‐horizon discrete‐choice dynamic programming models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 149-154, January.
    28. Christian Belzil & Jorgen Hansen & Xingfei Liu, 2017. "Dynamic skill accumulation, education policies, and the return to schooling," Quantitative Economics, Econometric Society, vol. 8(3), pages 895-927, November.
    29. Stock, James H & Wise, David A, 1990. "Pensions, the Option Value of Work, and Retirement," Econometrica, Econometric Society, vol. 58(5), pages 1151-1180, September.
    30. Donghoon Lee & Kenneth I. Wolpin, 2006. "Intersectoral Labor Mobility and the Growth of the Service Sector," Econometrica, Econometric Society, vol. 74(1), pages 1-46, January.
    31. Robert M. Sauer, 2015. "Does It Pay For Women To Volunteer?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 537-564, May.
    32. Keane, Michael P & Wolpin, Kenneth I, 2001. "The Effect of Parental Transfers and Borrowing Constraints on Educational Attainment," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(4), pages 1051-1103, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    2. Keane, Michael P. & Todd, Petra E. & Wolpin, Kenneth I., 2011. "The Structural Estimation of Behavioral Models: Discrete Choice Dynamic Programming Methods and Applications," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 4, pages 331-461, Elsevier.
    3. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    4. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    5. Philipp Eisenhauer & James J. Heckman & Stefano Mosso, 2015. "Estimation Of Dynamic Discrete Choice Models By Maximum Likelihood And The Simulated Method Of Moments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 331-357, May.
    6. Michael P. Keane, 2015. "Effects Of Permanent And Transitory Tax Changes In A Life‐Cycle Labor Supply Model With Human Capital," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 485-503, May.
    7. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    8. Robert M. Sauer, 2015. "Does It Pay For Women To Volunteer?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 537-564, May.
    9. Christian Belzil & Jorgen Hansen & Xingfei Liu, 2017. "Dynamic skill accumulation, education policies, and the return to schooling," Quantitative Economics, Econometric Society, vol. 8(3), pages 895-927, November.
    10. Rania Gihleb & Osnat Lifshitz, 2022. "Dynamic Effects of Educational Assortative Mating on Labor Supply," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 46, pages 302-327, October.
    11. Michael P. Keane, 2015. "Effects Of Permanent And Transitory Tax Changes In A Life‐Cycle Labor Supply Model With Human Capital," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 485-503, May.
    12. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    13. Michael P. Keane, 2011. "Labor Supply and Taxes: A Survey," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 961-1075, December.
    14. Elena Mattana & Juanna Joensen, 2016. "Student Aid, Academic Achievement, and Labor Market Behavior," 2016 Meeting Papers 1102, Society for Economic Dynamics.
    15. Elena Mattana & Juanna Joensen, 2014. "Student Aid, Academic Achievement, and Labor Market Behavior: Grants or Loans?," 2014 Meeting Papers 707, Society for Economic Dynamics.
    16. Michael P. Keane & Kenneth I. Wolpin, 2009. "Empirical Applications of Discrete Choice Dynamic Programming Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(1), pages 1-22, January.
    17. Chuan, A. & Zhang, W., 2021. "Non-College Occupations, Workplace Routinization, and the Gender Gap in College Enrollment," Cambridge Working Papers in Economics 2177, Faculty of Economics, University of Cambridge.
    18. Suqin Ge, 2011. "Women's College Decisions: How Much Does Marriage Matter?," Journal of Labor Economics, University of Chicago Press, vol. 29(4), pages 773-818.
    19. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    20. Richard Blundell & Monica Costa Dias & Costas Meghir & Jonathan Shaw, 2016. "Female Labor Supply, Human Capital, and Welfare Reform," Econometrica, Econometric Society, vol. 84, pages 1705-1753, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:ifsewp:21/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.