IDEAS home Printed from https://ideas.repec.org/p/ags/quedwp/273687.html

A Practitioner’s Guide to Bayesian Estimation of Discrete Choice Dynamic Programming Models

Author

Listed:
  • Imai, Susumu
  • Ching, Andrew
  • Ishihara, Masakazu
  • Jain, Neelan

Abstract

This paper provides a step-by-step guide to estimating discrete choice dynamic programming (DDP) models using the Bayesian Dynamic Programming algorithm developed in Imai, Jain and Ching (2008) (IJC). The IJC method combines the DDP solution algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a single algorithm, which solves the DDP model and estimates its structural parameters simultaneously. The main computational advantage of this estimation algorithm is the efficient use of information obtained from the past iterations. In the conventional Nested Fixed Point algorithm, most of the information obtained in the past iterations remains unused in the current iteration. In contrast, the Bayesian Dynamic Programming algorithm extensively uses the computational results obtained from the past iterations to help solving the DDP model at the current iterated parameter values. Consequently, it significantly alleviates the computational burden of estimating a DDP model. We carefully discuss how to implement the algorithm in practice, and use a simple dynamic store choice model to illustrate how to apply this algorithm to obtain parameter estimates.

Suggested Citation

  • Imai, Susumu & Ching, Andrew & Ishihara, Masakazu & Jain, Neelan, 2009. "A Practitioner’s Guide to Bayesian Estimation of Discrete Choice Dynamic Programming Models," Queen's Economics Department Working Papers 273687, Queen's University - Department of Economics.
  • Handle: RePEc:ags:quedwp:273687
    DOI: 10.22004/ag.econ.273687
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/273687/files/qed_wp_1201.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.273687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Shervin Shahrokhi Tehrani & Andrew T. Ching, 2024. "A Heuristic Approach to Explore: The Value of Perfect Information," Management Science, INFORMS, vol. 70(5), pages 3200-3224, May.
    3. Masakazu Ishihara & Andrew T. Ching, 2019. "Dynamic Demand for New and Used Durable Goods Without Physical Depreciation: The Case of Japanese Video Games," Marketing Science, INFORMS, vol. 38(3), pages 392-416, May.
    4. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    5. Jeremy Schwartz, 2019. "The Job Search Intensity Supply Curve: How Labor Market Conditions Affect Job Search Effort," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(2), pages 269-300, April.
    6. Andrew T. Ching & Matthew Osborne, 2020. "Identification and Estimation of Forward-Looking Behavior: The Case of Consumer Stockpiling," Marketing Science, INFORMS, vol. 39(4), pages 707-726, July.
    7. Février, Philippe & Wilner, Lionel, 2016. "Do consumers correctly expect price reductions? Testing dynamic behavior," International Journal of Industrial Organization, Elsevier, vol. 44(C), pages 25-40.
    8. Andrew T. Ching & Masakazu Ishihara, 2018. "Identification of Dynamic Models of Rewards Programme," The Japanese Economic Review, Japanese Economic Association, vol. 69(3), pages 306-323, September.
    9. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    10. Sara Amoroso, 2014. "The hidden costs of R&D collaboration," JRC Working Papers on Corporate R&D and Innovation 2014-02, Joint Research Centre.
    11. Hiroyuki Kasahara & Katsumi Shimotsu, 2018. "Estimation of Discrete Choice Dynamic Programming Models," The Japanese Economic Review, Japanese Economic Association, vol. 69(1), pages 28-58, March.
    12. Zhou, Yiyi, 2012. "Failure to Launch in Two-Sided Markets: A Study of the U.S. Video Game Market," MPRA Paper 42002, University Library of Munich, Germany.
    13. Murasawa, Yasutomo, 2023. "大学中退の逐次意思決定モデルの構造推定 [Structural estimation of a sequential decision model of college dropout]," MPRA Paper 118183, University Library of Munich, Germany.
    14. Shunyuan Zhang & Param Vir Singh & Anindya Ghose, 2019. "A Structural Analysis of the Role of Superstars in Crowdsourcing Contests," Service Science, INFORMS, vol. 30(1), pages 15-33, March.
    15. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    16. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    17. Chul Kim & P. K. Kannan & Michael Trusov & Andrea Ordanini, 2020. "Modeling Dynamics in Crowdfunding," Marketing Science, INFORMS, vol. 39(2), pages 339-365, March.
    18. Jialie Chen, 2023. "Learning and skill set formation: A structural examination of version upgrades, user visibility, and AI strategies," Production and Operations Management, Production and Operations Management Society, vol. 32(12), pages 3856-3872, December.

    More about this item

    Keywords

    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • M3 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:273687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.