IDEAS home Printed from https://ideas.repec.org/h/eee/hecchp/1-15.html
   My bibliography  Save this book chapter

Monte carlo simulation and numerical integration

In: Handbook of Computational Economics

Author

Listed:
  • Geweke, John

Abstract

This is a survey of simulation methods in economics, with a specific focus on integration problems. It describes acceptance methods, importance sampling procedures, and Markov chain Monte Carlo methods for simulation from univariate and multivariate distributions and their application to the approximation of integrals. The exposition gives emphasis to combinations of different approaches and assessment of the accuracy of numerical approximations to integrals and expectations. The survey illustrates these procedures with applications to simulation and integration problems in economics.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Geweke, John, 1996. "Monte carlo simulation and numerical integration," Handbook of Computational Economics,in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 15, pages 731-800 Elsevier.
  • Handle: RePEc:eee:hecchp:1-15
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/B7P5C-4FD79WD-K/2/f3dbee4e06832f7b28a252bf84b87377
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
    3. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    4. McGrattan, Ellen R., 1996. "Solving the stochastic growth model with a finite element method," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 19-42.
    5. Anthony A. Smith, Jr., 1991. "Solving Stochastic Dynamic Programming Problems Using Rules Of Thumb," Working Papers 816, Queen's University, Department of Economics.
    6. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    7. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, January.
    8. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    9. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    10. Geweke, John, 1986. "Exact Inference in the Inequality Constrained Normal Linear Regression Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(2), pages 127-141, April.
    11. Geweke, John, 1988. "Antithetic acceleration of Monte Carlo integration in Bayesian inference," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 73-89.
    12. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    13. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:hecchp:1-15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.