IDEAS home Printed from https://ideas.repec.org/p/lvl/laeccr/9509.html

Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes

Author

Listed:
  • GORDON, Stephen

  • BÉLANGER, Gilles

Abstract

This survey provides an introduction to Markov Chain Monte Carlo (MCMC) sampling techniques and to their applications to Bayesian econometrics. In describing the Gibbs sampler and the Metropolis-Hastings algorithm, the emphasis is put on how these techniques can be put into practice; the theoretical foundations are outlined using the elementary properties of Markov chains. To illustrate the potential of MCMC techniques, we decribe several examples where their application has produced clear gains over classical methods of inference. Ce survol fournit une introduction aux techniques d’échantillonnage de type Markov Chain Monte Carlo (MCMC) et leurs applications à l’économétrie bayesienne. Par ce survol notre but n’est pas d’expliquer les fondements théoriques derrière les méthodes de type MCMC, mais bien de faire un exposé pratique des techniques qui s’y rapportent. Nous chercherons surtout à mettre en valeur la facilité et l’étendue des applications par l’utilisation d’exemples simples.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • GORDON, Stephen & BÉLANGER, Gilles, 1995. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," Cahiers de recherche 9509, Université Laval - Département d'économique.
  • Handle: RePEc:lvl:laeccr:9509
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/delvlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.