IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/950.html
   My bibliography  Save this paper

To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends

Author

Abstract

In two recent articles, Sims (1988) and Sims and Uhlig (1988) question the value of much of the ongoing literature on unit roots and stochastic trends. They characterize the seeds of this literature as "sterile ideas," the application of nonstationary limit theory as "wrongheaded and unenlightening" and the use of classical methods of inference as "unreasonable" and "logically unsound." They advocate in place of classical methods an explicit Bayesian approach to inference that utilizes a flat prior on the autoregressive coefficient. DeJong and Whiteman adopt a related Bayesian approach in a group of papers (1989a,b,c) that seek to reevaluate the empirical evidence from historical economic time series. Their results appear to be conclusive in turning around the earlier, influential conclusions of Nelson and Plosser (1982) that most aggregate economic time series have stochastic trends. So far, these criticisms of unit root econometrics have gone unanswered; the assertions about the impropriety of classical methods and the superiority of flat prior Bayesian methods have been unchallenged; and the empirical reevaluation of evidence in support of stochastic trends has been left without comment. This paper breaks that silence and offers a new perspective. We challenge the methods, the assertions and the conclusions of these articles on the Bayesian analysis of unit roots. Our approach is also Bayesian but we employ objective ignorance priors not flat priors in our analysis. Ignorance priors represent a state of ignorance about the value of a parameter and in many models are very different from flat priors. We demonstrate that in time series models flat priors do not represent ignorance but are actually informative (sic) precisely because they neglect generically available information about how autoregressive coefficients influence observed time series characteristics. Contrary to their apparent intent, flat priors unwittingly bias inferences toward stationary and iid alternatives where they do represent ignorance, as in the linear regression model. This bias helps to explain the outcome of the simulation experiments in Sims and Uhlig and the empirical results of DeJong and Whiteman. Under flat priors and ignorance priors this paper derives posterior distributions for the parameters in autoregressive models with a deterministic trend and an arbitrary number of lags. Marginal posterior distributions are obtained by using the Laplace approximation for multivariate integrals along the lines suggested by the author (1983) in some earlier work. The bias from the use of flat priors is shown in our simulations to be substantial; and we conclude that it is unacceptably large in models with a fitted deterministic trend, for which the expected posterior probability of a stochastic trend is found to be negligible even though the true data generating mechanism has a unit root. Under ignorance priors, Bayesian inference is shown to accord more closely with the results of classical methods. An interesting outcome of our simulations and our empirical work is the bimodal Bayesian posterior, which demonstrates that Bayesian confidence sets can be disjoint, just like classical confidence intervals that are based on asymptotic theory. The paper concludes with an empirical application of our Bayesian methodology to the Nelson- Plosser series. Seven of the fourteen series show evidence of stochastic trends under ignorance priors, whereas under flat priors on the coefficients all but three of the series appear trend stationary. The latter result corresponds closely with the conclusion reached by DeJong and Whiteman (1989b) (based on truncated flat priors) that all but two of the Nelson-Plosser series are trend stationary. We argue that the DeJong-Whiteman inferences are biased toward trend stationarity through the use of flat priors and that their inferences are fragile (i.e., not robust) not only to the prior but also to the lag length chosen in the time series specification.

Suggested Citation

  • Peter C.B. Phillips, 1990. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Cowles Foundation Discussion Papers 950, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:950
    Note: CFP 798.
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d09/d0950.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C.B. Phillips & Sam Ouliaris & Joon Y. Park, 1988. "Testing for a Unit Root in the Presence of a Maintained Trend," Cowles Foundation Discussion Papers 880, Cowles Foundation for Research in Economics, Yale University.
    2. Peter C.B. Phillips & Peter Schmidt, 1989. "Testing for a Unit Root in the Presence of Deterministic Trends," Cowles Foundation Discussion Papers 933, Cowles Foundation for Research in Economics, Yale University.
    3. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(01), pages 95-131, April.
    4. Christopher A. Sims, 1982. "Policy Analysis with Econometric Models," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 13(1), pages 107-164.
    5. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    6. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
    7. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    8. Leamer, Edward E, 1983. "Let's Take the Con Out of Econometrics," American Economic Review, American Economic Association, vol. 73(1), pages 31-43, March.
    9. Peter C.B. Phillips, 1981. "Marginal Densities of Instrumental Variable Estimators in the General Single Equation Case," Cowles Foundation Discussion Papers 609, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:950. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.