IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects

  • Garland Durham
Registered author(s):

    Techniques for simulated maximum likelihood (SML) estimation, filtering, and assessing the fit of stochastic volatility models are examined. Both one- and two-factor models (with leverage effects) are considered. The techniques are computationally efficient, robust, straightforward to implement, and easy to adapt to new models. Using these techniques, it is possible to estimate single-factor models over data sets of several thousand observations in several seconds. The computational efficiency of the techniques means that Monte Carlo studies assessing both the small sample statistical properties as well as the numerical properties of the estimators are easy to do. Such studies are important for all simulation estimators, including simulation-based Bayesian and method of moments estimators. The application looks at S\&P 500 index returns. Even the simple single-factor models adequately capture the dynamics of volatility; the problem is to get the shape of the returns distribution right. Although including a second volatility factor improves the fit over the basic single-factor models, a new formulation of the SV-t model (a single factor model, but with $t$ rather than normal errors in the observation equation) provides the best fit. However, all the models considered fail in a similar manner: they are unable to capture the left tail of the distribution. Fitting this part of the distribution is important for option-pricing and risk management. Although it may be possible to come up with ad hoc parametric models that fit particular data series and sample periods, a promising alternative might be to look at single-factor models with flexible forms for the error distributions

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.biz.uiowa.edu/faculty/gdurham/sv.pdf
    File Function: main text
    Download Restriction: no

    Paper provided by Econometric Society in its series Econometric Society 2004 North American Summer Meetings with number 294.

    as
    in new window

    Length:
    Date of creation: 11 Aug 2004
    Date of revision:
    Handle: RePEc:ecm:nasm04:294
    Contact details of provider: Phone: 1 212 998 3820
    Fax: 1 212 995 4487
    Web page: http://www.econometricsociety.org/pastmeetings.asp
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Shephard, N. & Pitt, M.K., 1995. "Likelihood Analysis of Non-Gaussian Parameter-Driven Models," Economics Papers 108, Economics Group, Nuffield College, University of Oxford.
    2. Chernov, Mikhail & Gallant, A. Ronald & Ghysels, Eric & Tauchen, George, 2002. "Alternative Models for Stock Price Dynamic," Working Papers 02-03, Duke University, Department of Economics.
    3. Sangjoon Kim, Neil Shephard & Siddhartha Chib, . "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
    4. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
    5. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-91, April.
    6. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    7. Neil Shephard, 2005. "Stochastic volatility," Economics Series Working Papers 2005-W17, University of Oxford, Department of Economics.
    8. Gallant, A. Ronald & Hsu, Chien-Te & Tauchen, George, 2000. "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," Working Papers 00-04, Duke University, Department of Economics.
    9. repec:dgr:uvatin:20000104 is not listed on IDEAS
    10. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
    11. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
    12. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    13. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    14. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
    15. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    16. Friedman, Moshe & Harris, Lawrence, 1998. "A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 284-91, July.
    17. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    18. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.